基于需求擴(kuò)散和隨機(jī)技術(shù)進(jìn)步的連續(xù)產(chǎn)品引入過程課件_第1頁
基于需求擴(kuò)散和隨機(jī)技術(shù)進(jìn)步的連續(xù)產(chǎn)品引入過程課件_第2頁
基于需求擴(kuò)散和隨機(jī)技術(shù)進(jìn)步的連續(xù)產(chǎn)品引入過程課件_第3頁
基于需求擴(kuò)散和隨機(jī)技術(shù)進(jìn)步的連續(xù)產(chǎn)品引入過程課件_第4頁
基于需求擴(kuò)散和隨機(jī)技術(shù)進(jìn)步的連續(xù)產(chǎn)品引入過程課件_第5頁
已閱讀5頁,還剩147頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

TimingSuccessiveProductIntroductionswithDemandDiffusionandStochastic

TechnologyImprovement

基于需求擴(kuò)散和隨機(jī)技術(shù)進(jìn)步的連續(xù)產(chǎn)品引入過程

R.MarkKrankelDepartmentofIndustrialandOperationsEngineering,UniversityofMichigan,IzakDuenyas,RomanKapuscinskiRossSchoolofBusiness,UniversityofMichigan,AnnArbor,MichiganPresentbyLiWeiTimingSuccessiveProductIntr1CONTENTSIntroductionLiteratureModelOptimalPolicyComputationalStudyandInsightsExtensionsCONTENTSIntroduction2IntroductionConsideraninnovativefirmthatmanagesthedevelopmentandproductionofasingle,durableproduct.Overtime,thefirm’sresearchanddevelopment(R&D)departmentgeneratesastochasticstreamofnewproducttechnology,features,andenhancementsfordesignintosuccessiveproductgenerations.IntroductionConsideraninnova3IntroductionThefirmcapturesthebenefitsofsuchadvancesbyintroducinganewproductgeneration.Duetofixedproduct-introductioncosts,itmaybeunreasonabletoimmediatelyreleaseanewproductgenerationaftereachtechnologydiscovery.Rather,thefirmmayprefertodelayanintroductionuntilsufficientincrementalnewproducttechnologyhasaccumulatedinR&D.Theobjectiveofthispaperistocharacterizethefirm’soptimalproduct-introductionpolicyIntroductionThefirmcaptures4IntroductionThetotalnumberofproductgenerationsisnotpre-specified;rather,itisdeterminedbythepaceoftechnologyimprovementalongwiththefirm’sdynamicdecisionsonwhentointroduce.Analysisiscenteredupontwokeyinfluencesaffectingtheintroductiontimingdecisions:(1)demanddiffusiondynamics,wherefutureproductdemandisafunctionofpastsales(2)technologyimprovementprocess,specificallytheconceptthatdelayingintroductiontoalaterdatemayleadtothecaptureoffurtherimprovementsinproducttechnology.IntroductionThetotalnumbero5IntroductionPreviousliteratureexaminingincrementaltechnologyintroductionhasfocusedoneither(1)or(2),butnonehaveconsideredbothfactorssimultaneously.Asaresult,thepresentanalysisprovidesnewinsightintothestructureoftheoptimalintroductiontimingpolicyforaninnovativefirm.Usingaproposeddecisionmodelthatincorporatesbothkeyinfluences,weprovetheoptimalityofathresholdpolicy:itisoptimalforthefirmtointroducethenextproductgenerationwhenthetechnologyofthecurrentgenerationisbelowastate-dependentthreshold,inwhichthestateisdefinedbythefirm’scumulativesalesandthetechnologylevelinR&D.IntroductionPreviousliteratur6IntroductionRelativepapersWilsonandNorton(1989)&MahajanandMuller(1996)Thesetwopapersproceedunderademanddiffusionframework,butdonotmodeltheprogressionofproducttechnology.Rather,theyassumethatthenextgenerationproducttobeintroducedisavailableatalltimesstartingfromTime0.Asaresult,theyrespectivelyconcludetheoptimalityof“nowornever”(thenewgenerationproductisintroducedimmediatelyornever)and“noworatmaturity”(thenewgenerationproductisintroducedimmediatelyorwhenthepresentgenerationproducthasreachedsufficientsales)rulesgoverningproductintroductions.IntroductionRelativepapers7LiteratureTwomainresearchareasaredirectlyrelevanttothecurrentwork.Thefirstcentersonmodelsofdemand.Papersinthisareadescribethepatternsofdemandexhibitedbysingleormultipleproductgenerations,specificallyinrelationtonewinnovations.Thesepapersconcentrateonsystemdynamicsand/ormodelfitwithempiricaldata.Thesecondresearchareaexaminesdecisionmodelsfortechnologyadoptiontiming.Asubsetofthisgroupincludespapersthatmodeltheintroductionofnewproductssubjecttodemanddiffusion.LiteratureTwomainresearchar8Literature—modelsofdemandBass(1969)initiatesthestreamthatexaminesdemanddiffusionmodelsbyformulatingamodelforasingle(innovative)product.TheBassmodelspecifiesapotentialadopterpopulationoffixedsizeandidentifiestwotypesofconsumerswithinthatpopulation:innovatorsandimitators.Innovatorsactindependently,whereastherateofadoptionduetoimitatorsdependsonthenumberofthosewhohavealreadyadopted.Theresultingdifferentialequationforsalesrateasafunctionoftimedescribestheempiricallyobserveds-shapedpatternofcumulativesales:exponentialgrowthtoapeakfollowedbyexponentialdecay.Literature—modelsofdemandBa9Literature—modelsofdemandBass,F.M.1969.Anewproductgrowthmodelforconsumerdurables.ManagementSci.15215–227.ProfDr.FrankM.Bass(1926-2006)wasaleadingacademicinthefieldofmarketingresearch,andisconsideredtobeamongthefoundersofMarketingscience.HebecamefamousasthecreatoroftheBassdiffusionmodelthatdescribestheadoptionofnewproductsandtechnologiesbyfirst-timebuyers.HediedonDecember1,2006.Literature—modelsofdemandBa10Literature—modelsofdemandNortonandBass(1987)extendtheoriginalBassmodelbyincorporatingsubstitutioneffectstodescribethegrowthanddeclineofsalesforsuccessivegenerationsofafrequentlypurchasedproduct.JunandPark(1999)examinemultiple-generationdemanddiffusioncharacteristicsbycombiningdiffusiontheorywithelementsofchoicetheory.WilsonandNorton(1989)proposeamultiple-generationdemanddiffusionmodelbasedoninformationflow.KumarandSwaminathan(2003)modifytheBassmodelforthecaseinwhichafirm’scapacityconstraintsmaylimitthefirm’sabilitytomeetalldemand.Usingtheirreviseddemanddiffusionmodel,theydetermineconditionsunderwhichacapacitatedfirm’soptimalproduction/salesplanisa“build-uppolicy,”inwhichthefirmbuildsupaninitialinventorylevelbeforethestartofproductsalesandalldemandismetthereafter.Literature—modelsofdemandNo11Literature—technologyadoptiontimingGjerdeetal.(2002)modelafirm’sdecisionsonthelevelofinnovationtoincorporateintosuccessiveproductgenerations.Thepaperdoesnotconsiderthediffusiondynamicsoftheexistingproductsinthemarket(productsalesratesdonotdependoncumulativesales).Cohenetal.(1996)assumethatproductcanonlybesoldduringafixedwindowoftime.Therefore,delayingtheproductintroductionforfurtherdevelopmentwillleadtoabetterproductandhigherrevenuesbutoverashortertime.Cohenetal.furtherassumethattheproductcurrentlyinthemarketorthenewlyintroducedproductbothhavesalesataconstantrate.Thus,theydonotconsiderthediffusiondynamics.TheyalsodonotconsiderthestochasticnatureoftheR&DProcess.Literature—technologyadoption12Literature—technologyadoptiontimingBalcerandLippman(1984)concludethatafirmwilladoptthecurrentbesttechnologyifitslaginprocesstechnologyexceedsacertainthreshold.Thethresholdiseithernonincreasingornondecreasingintime,dependentonexpectationswithrespecttopotentialfortechnologydiscovery.Farzinetal.(1998)considersasimilarproblemunderadynamicprogrammingframework.Thepaperexplicitlyaddressestheoptionvalueofdelayingadoptionandcomparesresultstothoseusingtraditionalnetpresentvaluemethods,inwhichtechnologyadoptiontakesplaceiftheresultingdiscountednetcashflowsarepositive.Ineachoftheseworks,thetechnologyadoptiondecisiondoesnotexplicitlyconsidertheeffectsofadoptiontimingonproduct-demanddynamics.Literature—technologyadoption13Literature—technologyadoptiontimingWilsonandNorton(1989)considertheone-timeintroductiondecisionforanewproductgeneration.Intheirmodel,productintroductionhasfixedpositiveeffectsonmarketpotentialalongwithnegativeeffectsduetocannibalization.Theyconcludethattheoptimalpolicyforthefirmisgivenbya“nowornever”rule.Thatis,itwilleitherbeoptimaltointroducetheimprovedproductassoonasitisavailableorneveratall.MahajanandMuller(1996)concludethatitwillbeoptimaltoeitherintroducetheimprovedproductassoonasitisavailableorwhenenoughsaleshavebeenaccumulatedforthepreviousproductgeneration.(“noworatmaturity”rule)BothWilsonandNorton(1989)andMahajanandMuller(1996)implicitlyassumethatthenextproductgenerationisavailableandremainsunchangedregardlessofwhenitisintroduced.Incontrast,weassumethatafirmthatdelaysintroductionofthenextproductgenerationexpectstocapturegreatertechnologicaladvancesatalaterdate.Literature—technologyadoption14ModelUnderadiscrete-time,infinite-horizonscenario,considerasinglebaseproductthatprogressesthroughaseriesofproductgenerationsovertime.ThebenefitsofimprovedtechnologyarerealizedonlythroughintroductionofanewproductgenerationthatincorporatesthelatesttechnologyavailableinR&D.Animprovementintheincumbentproducttechnologyleadstoahighersalespotentialforthenewproductgeneration.However,eachnewgenerationrequiresafixedintroductioncost.Thefirmseeksanintroductionpolicythatmaximizesnetprofits.ModelUnderadiscrete-time,in15ModelIneachperiod,thefirmhastheoptiontoeitherintroducethelatesttechnologyorcontinuesellingatthecurrentincumbenttechnologylevel(wait).WemodeltheleveloftechnologyinR&Dusingasingleindex,andassumethatthislevelimprovesstochasticallyduringeachperiod.Ourobjectiveistocharacterizethefirm’soptimalintroductionpolicygiventhisstochasticR&Dprocess.ModelIneachperiod,thefirm16Model—NotationandAssumptionsWebeginwiththefollowingdefinitionsunderadynamic-programmingframework:Model—NotationandAssumptions17Model—NotationandAssumptionsModel—NotationandAssumptions18Model—NotationandAssumptionsWeconsideradurablebaseproductforwhichproducttechnologyisadditiveandintroductionofanewproductgenerationresultsincompleteobsolescenceofthepreviousgeneration;i.e.,onceanewgenerationisintroduced,salesofthepreviousgenerationimmediatelydroptoandremainatzero.Thispropertyisreferredtolaterasthe“completereplacement”condition.Itisassumedthat(1)availableproducttechnologyimprovesineachperiodaccordingtoastochasticprocess,and(2)salesforanygivengenerationfollowademanddiffusionprocess.Model—NotationandAssumptions19Model—NotationandAssumptionsBoththetechnologylevelandthepriceofanewproductareexpectedtoinfluencetheproduct’smarketpotentialandassociateddemanddiffusiondynamics.Tounderstandtheeffectsofprogressingtechnologyindependentofothercompoundingfactors,weassumeaveryspecificbutrealisticpricingstrategythatmaintainsconstantunitprofitmargins.Model—NotationandAssumptions20Model—NotationandAssumptionsAsmentionedabove,salespotentialisassumedtobeanincreasingfunctionofproducttechnologylevel.Moreover,wedonotmodelcapacityconstraintsandassumethatalldemandcanbemetsothatsalesequalsdemand.Model—NotationandAssumptions21ModelFormulationthefollowingassumptionismadeonthesalesratecurves:ModelFormulationthefollowing22ModelFormulation(i)ensuresthat,allelseequal,productsalesrateisnondecreasinginproducttechnology.Part(ii)accommodatesrealisticdurable-goodmarketscenariosinwhichthepotentialmarketsizeisfiniteandcurrentperiodsalesdonotexceedtotalremainingmarketpotential.Condition(iii)limitstherateatwhichsalesdecreaseandinadiscrete-timeframeworkguaranteesthatthesalesratefromoneperiodtothenextdoesnotdecreaseatafasterpacethansalesaccumulatedwithintheperiod.ModelFormulation(i)ensurest23ModelFormulationModelFormulation24ModelFormulationTheoptimumintroductionpolicyiscomputedfromtheoptimalityequation:ModelFormulationTheoptimumi25Model—RelationshiptoDemandDiffusionForthescenarioconsideredinthispaper,thereisanaturallinkbetweenthissalesmodelandthatofatypical(continuous-time)diffusionmodel.ConsidertheBassdiffusionmodelforasingleinnovativeproduct:Model—RelationshiptoDemandD26Model—RelationshiptoDemandDiffusionMahajanandMuller(1996)presentanextensionoftheBassmodelforthecaseofmultipleproductgenerations.Model—RelationshiptoDemandD27Model—RelationshiptoDemandDiffusionModel—RelationshiptoDemandD28Model—RelationshiptoDemandDiffusionwhereaandbarecoefficientsofinnovationandimitation,respectively.Becausecumulativesalesistrackedasastatevariable,thedecisionmodel(1)–(3)clearlycapturestheinteractionbetweenproductgenerationswhensalescurvesareofthedemanddiffusionform(6).Moreover,anexaminationof(6)showsthatthedemanddiffusionformsatisfiesAssumption1subjecttoamildrestrictiononproblemparameters.Model—RelationshiptoDemandD29OptimalPolicyOptimalPolicy30OptimalPolicyOptimalPolicy31OptimalPolicyThefirstresultstatesthatasthetwosystemsprogressovertime,thecumulativesaleslevelofthefirmwithlowerinitialcumulativesaleswillneversurpassthefirmwithhigherinitialcumulativesales.OptimalPolicyThefirstresult32OptimalPolicyOptimalPolicy33OptimalPolicyTheresultstatesthatallelseequal,thediscountedoptimalprofit-to-goforafirmwithlowercumulativesaleswillnotexceedthatofafirmwithhighercumulativesalesbymorethanthenetvalueoftheircumulativesalesdifference.Thatis,futurebenefitscannotmakeupforthecurrentsalesdeficit.OptimalPolicyTheresultstate34OptimalPolicyOptimalPolicy35OptimalPolicyOptimalPolicy36OptimalPolicyOptimalPolicy37OptimalPolicyOptimalPolicy38OptimalPolicyOptimalPolicy39OptimalPolicyOptimalPolicy40OptimalPolicyOptimalPolicy41OptimalPolicyOptimalPolicy42OptimalPolicyOptimalPolicy43ComputationalStudyandInsightsThenumericalstudyfocusesontheinfluencesofasimpletechnologydiscoveryrate,fixedproduct-introductioncosts,andmarketparametersincludingthediffusioncoefficientsandaparameterdescribingthesensitivityofproductmarketpotentialtochangesinproducttechnology.ComputationalStudyandInsigh44ComputationalStudyandInsightsforpurposesofnumericalinvestigationwebeginwithasimplifiedbaselinescenario.Salesratecurvesforthebaselinescenarioaregeneratedwithinadiscrete-timeframeworktoapproximateademanddiffusionprocessaccordingtotheformgivenin(6).

TechnologyimprovementisassumedtofollowasimplifiedstochasticprocessinwhichavailabletechnologyinR&Dincreasesbyoneineachperiodwithprobabilityp.ComputationalStudyandInsigh45ComputationalStudyandInsightsComputationalStudyandInsigh46ComputationalStudyandInsightsComputationalStudyandInsigh47ComputationalStudyandInsightsThebaselineoptimalpolicyiscomputedbysolvingthedynamicprogram(3).Insolving(3)numerically,weuselinearinterpolationtohandlecasesinwhichthecurrentperiodsalesgszisanonintegermultipleoftheindexingunitusedforcumulativesales.ComputationalStudyandInsigh48ComputationalStudyandInsightsComputationalStudyandInsigh49ComputationalStudyandInsightsNumericalapproximationgeneratesthebaselinesetoftechnologyswitchingcurvesillustratedinFigure6.ComputationalStudyandInsigh50ComputationalStudyandInsightsTheswitchingcurvesinFigure6suggestthatoptimalintroductionofthenextproductgenerationmaybetriggeredinoneoftwoways:(1)throughsufficientproductsalesatthecurrenttechnologylevels,(2)throughsignificantadvancesinavailableproducttechnology.(1)impliesthat,evenwithoutfurthergainsinR&D,afirmthatcontinuestosellthecurrentgenerationlongenoughmayeventuallyfinditoptimaltointroducethetechnologyonhandeventhoughintroducingatthesametechnologylevelwasnotprofitableinthepast.(2)impliesthat,regardlessofthecurrentgeneration’spositionalongitssalescurve,itmaybeoptimaltointroduceanewgenerationwithlargeenoughgainsinR&Dtechnology.ComputationalStudyandInsigh51ComputationalStudyandInsightsConsidertheexpectedrateoftechnologydiscoveryasmeasured(forthebaselinescenario)bythetechnologydiscoveryprobabilityp.ComputationalStudyandInsigh52ComputationalStudyandInsightsItisnaturalthatunderfixedintroductioncosts,afirmwithahighertechnologydiscoveryratewillintroducenewproductgenerationswhenthegainintechnologyoverthepreviousgenerationislarger.Hence,foragiventechnologylagbetweentheproductgenerationinthemarketandthatavailableinR&D,anincreaseinthetechnologydiscoveryprobabilityshouldincreasetheattractivenessofthedecisiontowaitversusintroduce.ComputationalStudyandInsigh53ComputationalStudyandInsightsComputationalStudyandInsigh54ComputationalStudyandInsightsItisevidentthatalthoughthetechnologyintroductionthresholdsareincreasinginthediscoveryprobability(asshowninFigure7),theexpectedrate,bothintermsoftimeandsales,atwhichthefirmwillintroducenewgenerationsisalsoincreasing;i.e.,firmswithahigherexpectedtechnologydiscoveryrateareexpectedtointroducenewproductgenerationsmorefrequentlyandwithlargertechnologygainsbetweengenerations.ComputationalStudyandInsigh55ComputationalStudyandInsightsNext,weexaminetheinfluenceofthefirm’scoststructureontheoptimalpolicy.AsillustratedinFigure8,adecreaseinthefixedintroductioncostKdecreasestheoptimalintroductionthresholdatanygivencumulativesaleslevel.ComputationalStudyandInsigh56ComputationalStudyandInsightsLetusturntotheparametersthatdescribetheproductmarket.Themodeledproductsalesdynamicswillbeaffectedbythediffusioncoefficientsaandbin(6)aswellasthemarketpotentialparameterm,thatdeterminestheproductmarketpotentialforaspecifictechnologylevel.ComputationalStudyandInsigh57ComputationalStudyandInsightsMarketPotentialParameterAnincreaseinmtranslatestolargergainsinmarketpotentialperunitgainintechnology.Inturn,thesalesrateatagivenlevelofcumulativesalesismoresensitivetoincreasesinproducttechnologywhenmishigher.ComputationalStudyandInsigh58ComputationalStudyandInsightsDemandDiffusionCoefficientsAproductwithahighercoefficientofinnovationa

wouldexhibitasalesratecurvethatstartswithhigherone-periodsales,peaksearlier,andliescompletelyabovethatofaproductwithlowera.Figure10illustrateshowthecoefficientofinnovationinfluencestheproductsalesratecurves.ComputationalStudyandInsigh59ComputationalStudyandInsightsDemandDiffusionCoefficientsWefindthataproductwithhighercoefficientofinnovationisassociatedwithmore-frequentproductintroductions.ComputationalStudyandInsigh60ComputationalStudyandInsightsDemandDiffusionCoefficientsSimilartotheeffectofa,ahighercoefficientofimitationb

translatestoasalesratecurvethatliescompletelyabovethatforlowerb.ComputationalStudyandInsigh61ComputationalStudyandInsightsDemandDiffusionCoefficientsAswitha,theintroductionthresholdsaredecreasingintheproduct’scoefficientofimitationb.Thus,afirmshouldintroducenewproductgenerationsmorefrequentlygivenabasetechnologythatdiffusesthroughitspotentialadopterpopulationfaster.ComputationalStudyandInsigh62ComputationalStudyandInsightsComputationalStudyandInsigh63ComputationalStudyandInsightsUncertainDemandHere,wedescribetwopossiblescenariosforuncertaindemandalongwiththereviseddecision-modelformulations.ComputationalStudyandInsigh64ComputationalStudyandInsightsComputationalStudyandInsigh65ComputationalStudyandInsightsThedecisionmodel(1)–(3)isreformulatedasfollowstoaccommodatethissingle-perioddemanduncertainty:ComputationalStudyandInsigh66ComputationalStudyandInsightsComputationalStudyandInsigh67ComputationalStudyandInsightsAfirmmayalsowishtocapturetheuncertaintyinoverallmarketacceptanceofanewproductgenerationwhiletakingintoaccountpotentialcorrelationbetweenthemarketsuccessoftwosequentialgenerations.Forthedemanddiffusioncase,theestimationofanewgeneration’smarketpotentialN(z)isakeysourceofsuchuncertainty.ComputationalStudyandInsigh68ComputationalStudyandInsightsThepresentmodelframeworkcancapturethemarketsuccessuncertaintyforanewgenerationusingaMarkovmodulateddemandformulation.Apossibleimplementationispresentedhereforillustration.ComputationalStudyandInsigh69ComputationalStudyandInsightsComputationalStudyandInsigh70ComputationalStudyandInsightsThedecisionmodel(12)–(13)implementsthisMarkovmodulateddemandframeworkforaccommodatinguncertaintyinproductsuccess.ComputationalStudyandInsigh71ExtensionsAlimitationofouranalysisisthatthemodeldoesnotconsidertheeffectsofintroductiontimingonconsumers’purchasestrategiesandresultingdemandpatterns.Significantincreaseinthefirm’spaceofproductintroductionsmaycauseconsumerstopostponepurchasedecisionsinanticipationofforthcomingproductimprovements(e.g.,Dhebar1994,Kornish2001).ExtensionsAlimitationofour72ExtensionsThemodeldoesnothowevercapturethetime-to-marketconcernsthatmayariseinacompetitivemarketsetting.AsdescribedinHendricksandSinghal(1997)thecostofdelay(andhencevalueofearlierintroduction)insuchenvironmentscanbesignificant.Onepossibledirectionforfutureresearchistoconsideragametheoreticmodelwithmultiplefirms.AnalternativeapproachmaybetofollowCohenetal.(1996)andimposeafixedwindowoftimefornewproductintroduction.Suchaconstraintimplicitlycapturestime-to-marketconcerns.ExtensionsThemodeldoesnoth73ExtensionsGeneralizetheframeworktoincorporateupgradepurchasesortopermitsimultaneoussaleofmultipleproductgenerationswithsubstitutioneffects.Allowproductpricetofluctuateovertimeanddifferbetweenproductgenerations.Incorporateadecisionvariablefortheexpectedpaceofproductinnovation(e.g.,asmeasuredbyR&Dinvestment)wouldenableamore-completeanalysisoffirmpolicies.ExtensionsGeneralizetheframe74THANKS!THANKS!75演講完畢,謝謝觀看!演講完畢,謝謝觀看!76TimingSuccessiveProductIntroductionswithDemandDiffusionandStochastic

TechnologyImprovement

基于需求擴(kuò)散和隨機(jī)技術(shù)進(jìn)步的連續(xù)產(chǎn)品引入過程

R.MarkKrankelDepartmentofIndustrialandOperationsEngineering,UniversityofMichigan,IzakDuenyas,RomanKapuscinskiRossSchoolofBusiness,UniversityofMichigan,AnnArbor,MichiganPresentbyLiWeiTimingSuccessiveProductIntr77CONTENTSIntroductionLiteratureModelOptimalPolicyComputationalStudyandInsightsExtensionsCONTENTSIntroduction78IntroductionConsideraninnovativefirmthatmanagesthedevelopmentandproductionofasingle,durableproduct.Overtime,thefirm’sresearchanddevelopment(R&D)departmentgeneratesastochasticstreamofnewproducttechnology,features,andenhancementsfordesignintosuccessiveproductgenerations.IntroductionConsideraninnova79IntroductionThefirmcapturesthebenefitsofsuchadvancesbyintroducinganewproductgeneration.Duetofixedproduct-introductioncosts,itmaybeunreasonabletoimmediatelyreleaseanewproductgenerationaftereachtechnologydiscovery.Rather,thefirmmayprefertodelayanintroductionuntilsufficientincrementalnewproducttechnologyhasaccumulatedinR&D.Theobjectiveofthispaperistocharacterizethefirm’soptimalproduct-introductionpolicyIntroductionThefirmcaptures80IntroductionThetotalnumberofproductgenerationsisnotpre-specified;rather,itisdeterminedbythepaceoftechnologyimprovementalongwiththefirm’sdynamicdecisionsonwhentointroduce.Analysisiscenteredupontwokeyinfluencesaffectingtheintroductiontimingdecisions:(1)demanddiffusiondynamics,wherefutureproductdemandisafunctionofpastsales(2)technologyimprovementprocess,specificallytheconceptthatdelayingintroductiontoalaterdatemayleadtothecaptureoffurtherimprovementsinproducttechnology.IntroductionThetotalnumbero81IntroductionPreviousliteratureexaminingincrementaltechnologyintroductionhasfocusedoneither(1)or(2),butnonehaveconsideredbothfactorssimultaneously.Asaresult,thepresentanalysisprovidesnewinsightintothestructureoftheoptimalintroductiontimingpolicyforaninnovativefirm.Usingaproposeddecisionmodelthatincorporatesbothkeyinfluences,weprovetheoptimalityofathresholdpolicy:itisoptimalforthefirmtointroducethenextproductgenerationwhenthetechnologyofthecurrentgenerationisbelowastate-dependentthreshold,inwhichthestateisdefinedbythefirm’scumulativesalesandthetechnologylevelinR&D.IntroductionPreviousliteratur82IntroductionRelativepapersWilsonandNorton(1989)&MahajanandMuller(1996)Thesetwopapersproceedunderademanddiffusionframework,butdonotmodeltheprogressionofproducttechnology.Rather,theyassumethatthenextgenerationproducttobeintroducedisavailableatalltimesstartingfromTime0.Asaresult,theyrespectivelyconcludetheoptimalityof“nowornever”(thenewgenerationproductisintroducedimmediatelyornever)and“noworatmaturity”(thenewgenerationproductisintroducedimmediatelyorwhenthepresentgenerationproducthasreachedsufficientsales)rulesgoverningproductintroductions.IntroductionRelativepapers83LiteratureTwomainresearchareasaredirectlyrelevanttothecurrentwork.Thefirstcentersonmodelsofdemand.Papersinthisareadescribethepatternsofdemandexhibitedbysingleormultipleproductgenerations,specificallyinrelationtonewinnovations.Thesepapersconcentrateonsystemdynamicsand/ormodelfitwithempiricaldata.Thesecondresearchareaexaminesdecisionmodelsfortechnologyadoptiontiming.Asubsetofthi

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論