![函數(shù)的奇偶性3人教課標(biāo)版課件_第1頁](http://file4.renrendoc.com/view/7a664964495d456507885927f197f5df/7a664964495d456507885927f197f5df1.gif)
![函數(shù)的奇偶性3人教課標(biāo)版課件_第2頁](http://file4.renrendoc.com/view/7a664964495d456507885927f197f5df/7a664964495d456507885927f197f5df2.gif)
![函數(shù)的奇偶性3人教課標(biāo)版課件_第3頁](http://file4.renrendoc.com/view/7a664964495d456507885927f197f5df/7a664964495d456507885927f197f5df3.gif)
![函數(shù)的奇偶性3人教課標(biāo)版課件_第4頁](http://file4.renrendoc.com/view/7a664964495d456507885927f197f5df/7a664964495d456507885927f197f5df4.gif)
![函數(shù)的奇偶性3人教課標(biāo)版課件_第5頁](http://file4.renrendoc.com/view/7a664964495d456507885927f197f5df/7a664964495d456507885927f197f5df5.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
CompanyLogoCompanyLogoCompanyLogoxy0CompanyLogoxy0CompanyLogo1.3.2函數(shù)的奇偶性CompanyLogo1.3.2函數(shù)的奇偶性CompanyLogo觀察下圖,思考并討論以下問題:(1)這兩個(gè)函數(shù)圖象有什么共同特征嗎?(2)相應(yīng)的兩個(gè)函數(shù)值對(duì)應(yīng)表是如何體現(xiàn)這些特征的?f(-3)=9=f(3)f(-2)=4=f(2)f(-1)=1=f(1)f(-3)=3=f(3)f(-2)=2=f(2)f(-1)=1=f(1)f(x)=x2f(x)=|x|實(shí)際上,對(duì)于R內(nèi)任意的一個(gè)x,都有f(-x)=(-x)2=x2=f(x),這時(shí)我們稱函數(shù)y=x2為偶函數(shù).CompanyLogo觀察下圖,思考并討論以下問題:(1)CompanyLogo1.偶函數(shù)
一般地,對(duì)于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=f(x),那么f(x)就叫做偶函數(shù).
例如,函數(shù)都是偶函數(shù),它們的圖象分別如下圖(1)、(2)所示.CompanyLogo1.偶函數(shù)一般地,對(duì)于函數(shù)fCompanyLogo觀察函數(shù)f(x)=x和f(x)=1/x的圖象(下圖),你能發(fā)現(xiàn)兩個(gè)函數(shù)圖象有什么共同特征嗎?f(-3)=-3=-f(3)f(-2)=-2=-f(2)f(-1)=-1=-f(1)實(shí)際上,對(duì)于R內(nèi)任意的一個(gè)x,都有f(-x)=-x=-f(x),這時(shí)我們稱函數(shù)y=x為奇函數(shù).f(-3)=-1/3=-f(3)f(-2)=-1/2=-f(2)f(-1)=-1=-f(1)CompanyLogo觀察函數(shù)f(x)=x和f(CompanyLogo2.奇函數(shù)
一般地,對(duì)于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=-
f(x),那么f(x)就叫做奇函數(shù).
注意:
1、函數(shù)是奇函數(shù)或是偶函數(shù)稱為函數(shù)的奇偶性,函數(shù)的奇偶性是函數(shù)的整體性質(zhì);2、由函數(shù)的奇偶性定義可知,函數(shù)具有奇偶性的一個(gè)必要條件是,對(duì)于定義域內(nèi)的任意一個(gè)x,則-x也一定是定義域內(nèi)的一個(gè)自變量(即定義域關(guān)于原點(diǎn)對(duì)稱).CompanyLogo2.奇函數(shù)一般地,對(duì)于函數(shù)fCompanyLogo3、奇、偶函數(shù)定義的逆命題也成立,即若f(x)為奇函數(shù),則f(-x)=-f(x)有成立.若f(x)為偶函數(shù),則f(-x)=f(x)有成立.4、如果一個(gè)函數(shù)f(x)是奇函數(shù)或偶函數(shù),那么我們就說函數(shù)f(x)具有奇偶性.CompanyLogo3、奇、偶函數(shù)定義的逆命題也成立,即CompanyLogo例5、判斷下列函數(shù)的奇偶性:(1)解:定義域?yàn)镽 ∵f(-x)=(-x)4=f(x)即f(-x)=f(x)∴f(x)偶函數(shù)(2)解:定義域?yàn)镽 f(-x)=(-x)5=-x5=-f(x)即f(-x)=-f(x)∴f(x)奇函數(shù)(3)解:定義域?yàn)閧x|x≠0} ∵f(-x)=-x+1/(-x)=-f(x)即f(-x)=-f(x)∴f(x)奇函數(shù)(4)解:定義域?yàn)閧x|x≠0} ∵f(-x)=1/(-x)2=f(x)即f(-x)=f(x)∴f(x)偶函數(shù)CompanyLogo例5、判斷下列函數(shù)的奇偶性:(1)解CompanyLogo3.用定義判斷函數(shù)奇偶性的步驟:(1)、先求定義域,看是否關(guān)于原點(diǎn)對(duì)稱;(2)、再判斷f(-x)=-f(x)或f(-x)=f(x)是否恒成立.CompanyLogo3.用定義判斷函數(shù)奇偶性的步驟:(1CompanyLogo課堂練習(xí)判斷下列函數(shù)的奇偶性:CompanyLogo課堂練習(xí)判斷下列函數(shù)的奇偶性:CompanyLogo3.奇偶函數(shù)圖象的性質(zhì)1、奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱. 反過來,如果一個(gè)函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱,那么就稱這個(gè)函數(shù)為奇函數(shù).2、偶函數(shù)的圖象關(guān)于y軸對(duì)稱. 反過來,如果一個(gè)函數(shù)的圖象關(guān)于y軸對(duì)稱,那么就稱這個(gè)函數(shù)為偶函數(shù).說明:奇偶函數(shù)圖象的性質(zhì)可用于:
a、簡化函數(shù)圖象的畫法.B、判斷函數(shù)的奇偶性CompanyLogo3.奇偶函數(shù)圖象的性質(zhì)1、奇函數(shù)的圖CompanyLogo例3、已知函數(shù)y=f(x)是偶函數(shù),它在y軸右邊的圖象如下圖,畫出在y軸左邊的圖象.xy0解:畫法略相等CompanyLogo例3、已知函數(shù)y=f(x)是偶函數(shù),CompanyLogoxy0相等CompanyLogoxy0相等CompanyLogo本課小結(jié)1、兩個(gè)定義:對(duì)于f(x)定義域內(nèi)的任意一個(gè)x,如果都有f(-x)=-f(x)f(x)為奇函數(shù)如果都有f(-x)=f(x)
f(x)為偶函數(shù)2、兩個(gè)性質(zhì):一個(gè)函數(shù)為奇函數(shù)它的圖象關(guān)于原點(diǎn)對(duì)稱一個(gè)函數(shù)為偶函數(shù)它的圖象關(guān)于y軸對(duì)稱CompanyLogo本課小結(jié)1、兩個(gè)定義:對(duì)于f(x)定有關(guān)的數(shù)學(xué)名言
數(shù)學(xué)知識(shí)是最純粹的邏輯思維活動(dòng),以及最高級(jí)智能活力美學(xué)體現(xiàn)。——普林舍姆
歷史使人聰明,詩歌使人機(jī)智,數(shù)學(xué)使人精細(xì)?!喔?/p>
數(shù)學(xué)是最寶貴的研究精神之一?!A羅庚
沒有哪門學(xué)科能比數(shù)學(xué)更為清晰地闡明自然界的和諧性?!_斯
數(shù)學(xué)是規(guī)律和理論的裁判和主宰者?!窘苊?/p>
有關(guān)的數(shù)學(xué)名言CompanyLogoCompanyLogoCompanyLogoxy0CompanyLogoxy0CompanyLogo1.3.2函數(shù)的奇偶性CompanyLogo1.3.2函數(shù)的奇偶性CompanyLogo觀察下圖,思考并討論以下問題:(1)這兩個(gè)函數(shù)圖象有什么共同特征嗎?(2)相應(yīng)的兩個(gè)函數(shù)值對(duì)應(yīng)表是如何體現(xiàn)這些特征的?f(-3)=9=f(3)f(-2)=4=f(2)f(-1)=1=f(1)f(-3)=3=f(3)f(-2)=2=f(2)f(-1)=1=f(1)f(x)=x2f(x)=|x|實(shí)際上,對(duì)于R內(nèi)任意的一個(gè)x,都有f(-x)=(-x)2=x2=f(x),這時(shí)我們稱函數(shù)y=x2為偶函數(shù).CompanyLogo觀察下圖,思考并討論以下問題:(1)CompanyLogo1.偶函數(shù)
一般地,對(duì)于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=f(x),那么f(x)就叫做偶函數(shù).
例如,函數(shù)都是偶函數(shù),它們的圖象分別如下圖(1)、(2)所示.CompanyLogo1.偶函數(shù)一般地,對(duì)于函數(shù)fCompanyLogo觀察函數(shù)f(x)=x和f(x)=1/x的圖象(下圖),你能發(fā)現(xiàn)兩個(gè)函數(shù)圖象有什么共同特征嗎?f(-3)=-3=-f(3)f(-2)=-2=-f(2)f(-1)=-1=-f(1)實(shí)際上,對(duì)于R內(nèi)任意的一個(gè)x,都有f(-x)=-x=-f(x),這時(shí)我們稱函數(shù)y=x為奇函數(shù).f(-3)=-1/3=-f(3)f(-2)=-1/2=-f(2)f(-1)=-1=-f(1)CompanyLogo觀察函數(shù)f(x)=x和f(CompanyLogo2.奇函數(shù)
一般地,對(duì)于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=-
f(x),那么f(x)就叫做奇函數(shù).
注意:
1、函數(shù)是奇函數(shù)或是偶函數(shù)稱為函數(shù)的奇偶性,函數(shù)的奇偶性是函數(shù)的整體性質(zhì);2、由函數(shù)的奇偶性定義可知,函數(shù)具有奇偶性的一個(gè)必要條件是,對(duì)于定義域內(nèi)的任意一個(gè)x,則-x也一定是定義域內(nèi)的一個(gè)自變量(即定義域關(guān)于原點(diǎn)對(duì)稱).CompanyLogo2.奇函數(shù)一般地,對(duì)于函數(shù)fCompanyLogo3、奇、偶函數(shù)定義的逆命題也成立,即若f(x)為奇函數(shù),則f(-x)=-f(x)有成立.若f(x)為偶函數(shù),則f(-x)=f(x)有成立.4、如果一個(gè)函數(shù)f(x)是奇函數(shù)或偶函數(shù),那么我們就說函數(shù)f(x)具有奇偶性.CompanyLogo3、奇、偶函數(shù)定義的逆命題也成立,即CompanyLogo例5、判斷下列函數(shù)的奇偶性:(1)解:定義域?yàn)镽 ∵f(-x)=(-x)4=f(x)即f(-x)=f(x)∴f(x)偶函數(shù)(2)解:定義域?yàn)镽 f(-x)=(-x)5=-x5=-f(x)即f(-x)=-f(x)∴f(x)奇函數(shù)(3)解:定義域?yàn)閧x|x≠0} ∵f(-x)=-x+1/(-x)=-f(x)即f(-x)=-f(x)∴f(x)奇函數(shù)(4)解:定義域?yàn)閧x|x≠0} ∵f(-x)=1/(-x)2=f(x)即f(-x)=f(x)∴f(x)偶函數(shù)CompanyLogo例5、判斷下列函數(shù)的奇偶性:(1)解CompanyLogo3.用定義判斷函數(shù)奇偶性的步驟:(1)、先求定義域,看是否關(guān)于原點(diǎn)對(duì)稱;(2)、再判斷f(-x)=-f(x)或f(-x)=f(x)是否恒成立.CompanyLogo3.用定義判斷函數(shù)奇偶性的步驟:(1CompanyLogo課堂練習(xí)判斷下列函數(shù)的奇偶性:CompanyLogo課堂練習(xí)判斷下列函數(shù)的奇偶性:CompanyLogo3.奇偶函數(shù)圖象的性質(zhì)1、奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱. 反過來,如果一個(gè)函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱,那么就稱這個(gè)函數(shù)為奇函數(shù).2、偶函數(shù)的圖象關(guān)于y軸對(duì)稱. 反過來,如果一個(gè)函數(shù)的圖象關(guān)于y軸對(duì)稱,那么就稱這個(gè)函數(shù)為偶函數(shù).說明:奇偶函數(shù)圖象的性質(zhì)可用于:
a、簡化函數(shù)圖象的畫法.B、判斷函數(shù)的奇偶性CompanyLogo3.奇偶函數(shù)圖象的性質(zhì)1、奇函數(shù)的圖CompanyLogo例3、已知函數(shù)y=f(x)是偶函數(shù),它在y軸右邊的圖象如下圖,畫出在y軸左邊的圖象.xy0解:畫法略相等CompanyLogo例3、已知函數(shù)y=f(x)是偶函數(shù),CompanyLogoxy0相等CompanyLogoxy0相等CompanyLogo本課小結(jié)1、兩個(gè)定義:對(duì)于f(x)定義域內(nèi)的任意一個(gè)x,如果都有f(-x)=-f(x)f(x)為奇函數(shù)如果都有f(-x)=f(x)
f(x)為偶函數(shù)2、兩個(gè)性質(zhì):一個(gè)函數(shù)為奇
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度智能家居系統(tǒng)集成工程承包合同范本
- 2025年度建筑園林景觀工程零星合同標(biāo)準(zhǔn)
- 衢州浙江衢州江山市交投人力資源有限公司勞務(wù)派遣人員招聘筆試歷年參考題庫附帶答案詳解
- 葫蘆島2024年遼寧葫蘆島市綏中縣教育局赴高等院校招聘教師92人筆試歷年參考題庫附帶答案詳解
- 秦皇島2025年天津市腫瘤醫(yī)院秦皇島醫(yī)院招聘人事代理人員15人筆試歷年參考題庫附帶答案詳解
- 甘肅2025年甘肅煤田地質(zhì)局一四九隊(duì)招聘筆試歷年參考題庫附帶答案詳解
- 珠海廣東珠海高新技術(shù)產(chǎn)業(yè)開發(fā)區(qū)創(chuàng)新創(chuàng)業(yè)服務(wù)中心招聘4名合同制職員筆試歷年參考題庫附帶答案詳解
- 河南2025年河南科技大學(xué)第一附屬醫(yī)院招聘筆試歷年參考題庫附帶答案詳解
- 棗莊2025年山東棗莊市疾病預(yù)防控制中心高層次急需緊缺人才招聘筆試歷年參考題庫附帶答案詳解
- 杭州浙江杭州市明遠(yuǎn)未來幼兒園編外教師招聘筆試歷年參考題庫附帶答案詳解
- 建設(shè)工程質(zhì)量安全監(jiān)督人員考試題庫含答案
- 無損檢測超聲波探傷檢測方案
- 浙江省溫州市地圖矢量PPT模板(圖文)
- DB32∕T 2948-2016 水利工程卷揚(yáng)式啟閉機(jī)檢修技術(shù)規(guī)程
- 建筑施工圖設(shè)計(jì)教程
- 高中化學(xué)必修一復(fù)習(xí)提綱
- 工程款支付報(bào)審表
- 同位角內(nèi)錯(cuò)角同旁內(nèi)角專項(xiàng)練習(xí)題有答案
- 常用抗凝藥物的應(yīng)用及護(hù)理PPT課件
- 淺談壓力容器產(chǎn)品監(jiān)督檢驗(yàn)工作要點(diǎn)
- 食品分析實(shí)驗(yàn)講義(1)
評(píng)論
0/150
提交評(píng)論