版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
新課標(biāo)人教版課件系列《高中數(shù)學(xué)》必修3新課標(biāo)人教版課件系列《高中數(shù)學(xué)》2.3
《變量間的相關(guān)關(guān)系》2.3
《變量間的相關(guān)關(guān)系》教學(xué)目標(biāo)
1.通過收集現(xiàn)實(shí)問題中兩個(gè)有關(guān)聯(lián)變量的數(shù)據(jù)作出散點(diǎn)圖,并利用散點(diǎn)圖直觀認(rèn)識(shí)變量間的相關(guān)關(guān)系;2.知道最小二乘法的思想,能根據(jù)給出的線性回歸方程系數(shù)公式建立線性回歸方程。教學(xué)重點(diǎn):作出散點(diǎn)圖和根據(jù)給出的線性回歸方程系數(shù)公式建立線性回歸方程。教學(xué)難點(diǎn):對最小二乘法的理解。教學(xué)目標(biāo)1.通過收集現(xiàn)實(shí)問題中兩個(gè)有關(guān)聯(lián)變量的數(shù)據(jù)作出散1、變量之間除了函數(shù)關(guān)系外,還有相關(guān)關(guān)系。例:(1)商品銷售收入與廣告支出經(jīng)費(fèi)之間的關(guān)系(2)糧食產(chǎn)量與施肥量之間的關(guān)系(3)人體內(nèi)脂肪含量與年齡之間的關(guān)系一、變量之間的相關(guān)關(guān)系不同點(diǎn):函數(shù)關(guān)系是一種確定的關(guān)系;而相關(guān)關(guān)系是一種非確定關(guān)系.相關(guān)關(guān)系與函數(shù)關(guān)系的異同點(diǎn):相同點(diǎn):均是指兩個(gè)變量的關(guān)系.1、變量之間除了函數(shù)關(guān)系外,還有相關(guān)關(guān)系。一、變量之間的相關(guān)2、兩個(gè)變量之間產(chǎn)生相關(guān)關(guān)系的原因是受許多不確定的隨機(jī)因素的影響。3、需要通過樣本來判斷變量之間是否存在相關(guān)關(guān)系一、變量之間的相關(guān)關(guān)系2、兩個(gè)變量之間產(chǎn)生相關(guān)關(guān)系的原因是受許多不確3、需要通過樣二、兩個(gè)變量的線性相關(guān)探究一
根據(jù)上述數(shù)據(jù),人體的脂肪含量和年齡之間有怎樣的關(guān)系?二、兩個(gè)變量的線性相關(guān)探究一根據(jù)上述數(shù)據(jù),人體二、兩個(gè)變量的線性相關(guān)1、散點(diǎn)圖探究一的散點(diǎn)圖2、正相關(guān)3、負(fù)相關(guān)
兩個(gè)變量成負(fù)相關(guān)時(shí),散點(diǎn)圖有什么特點(diǎn)?請舉一些生活中的變量成負(fù)相關(guān)的例子?!懊麕煶龈咄健笨梢岳斫鉃榻處煹乃皆礁?,學(xué)生的水平也越高。那么,教師的水平與學(xué)生的水平成什么相關(guān)關(guān)系?你能舉出更多的描述生活中兩個(gè)變量的相關(guān)關(guān)系的成語嗎?
表示具有相關(guān)關(guān)系的兩個(gè)變量的一組數(shù)據(jù)的圖形,叫做散點(diǎn)圖.二、兩個(gè)變量的線性相關(guān)1、散點(diǎn)圖探究一的散點(diǎn)圖2、正相關(guān)3、二、兩個(gè)變量的線性相關(guān)二、兩個(gè)變量的線性相關(guān)1、散點(diǎn)圖2、正相關(guān)3、負(fù)相關(guān)根據(jù)下表,作出散點(diǎn)圖(一)復(fù)習(xí)回顧1、散點(diǎn)圖2、正相關(guān)3、負(fù)相關(guān)根據(jù)下表,作出散點(diǎn)圖(一)復(fù)習(xí)(二)回歸直線2、回歸直線
如果散點(diǎn)圖中點(diǎn)的分布從總體上看大致在一條直線附近,我們就稱這兩個(gè)變量之間具有線性相關(guān)關(guān)系。1、變量間的線性相關(guān)上述直線稱為回歸直線。(二)回歸直線2、回歸直線如果散點(diǎn)圖中點(diǎn)(二)回歸直線3、如何求回歸直線的方程探究二幾何畫板探究
實(shí)際上,求回歸直線的關(guān)鍵是如何用數(shù)學(xué)的方法來刻畫”從整體上看,各點(diǎn)到此直線的距離最小”.(二)回歸直線3、如何求回歸直線的方程探究二幾何畫板探究這樣的方法叫做最小二乘法.這樣的方法叫做最小二乘法.問題歸結(jié)為:a,b取什么值時(shí)Q最小,即總體和最小.下面是計(jì)算回歸方程的斜率和截距的一般公式.根據(jù)最小二乘法和上述公式可以求回歸方程.問題歸結(jié)為:a,b取什么值時(shí)Q最小,即總體和最小.下面是計(jì)算練習(xí):根據(jù)下表,求回歸方程.練習(xí):根據(jù)下表,求回歸方程.1、列表2、代入公式計(jì)算3、寫出回歸直線方程1、列表2、代入公式計(jì)算3、寫出回歸直線方程再見再見新課標(biāo)人教版課件系列《高中數(shù)學(xué)》必修3新課標(biāo)人教版課件系列《高中數(shù)學(xué)》2.3
《變量間的相關(guān)關(guān)系》2.3
《變量間的相關(guān)關(guān)系》教學(xué)目標(biāo)
1.通過收集現(xiàn)實(shí)問題中兩個(gè)有關(guān)聯(lián)變量的數(shù)據(jù)作出散點(diǎn)圖,并利用散點(diǎn)圖直觀認(rèn)識(shí)變量間的相關(guān)關(guān)系;2.知道最小二乘法的思想,能根據(jù)給出的線性回歸方程系數(shù)公式建立線性回歸方程。教學(xué)重點(diǎn):作出散點(diǎn)圖和根據(jù)給出的線性回歸方程系數(shù)公式建立線性回歸方程。教學(xué)難點(diǎn):對最小二乘法的理解。教學(xué)目標(biāo)1.通過收集現(xiàn)實(shí)問題中兩個(gè)有關(guān)聯(lián)變量的數(shù)據(jù)作出散1、變量之間除了函數(shù)關(guān)系外,還有相關(guān)關(guān)系。例:(1)商品銷售收入與廣告支出經(jīng)費(fèi)之間的關(guān)系(2)糧食產(chǎn)量與施肥量之間的關(guān)系(3)人體內(nèi)脂肪含量與年齡之間的關(guān)系一、變量之間的相關(guān)關(guān)系不同點(diǎn):函數(shù)關(guān)系是一種確定的關(guān)系;而相關(guān)關(guān)系是一種非確定關(guān)系.相關(guān)關(guān)系與函數(shù)關(guān)系的異同點(diǎn):相同點(diǎn):均是指兩個(gè)變量的關(guān)系.1、變量之間除了函數(shù)關(guān)系外,還有相關(guān)關(guān)系。一、變量之間的相關(guān)2、兩個(gè)變量之間產(chǎn)生相關(guān)關(guān)系的原因是受許多不確定的隨機(jī)因素的影響。3、需要通過樣本來判斷變量之間是否存在相關(guān)關(guān)系一、變量之間的相關(guān)關(guān)系2、兩個(gè)變量之間產(chǎn)生相關(guān)關(guān)系的原因是受許多不確3、需要通過樣二、兩個(gè)變量的線性相關(guān)探究一
根據(jù)上述數(shù)據(jù),人體的脂肪含量和年齡之間有怎樣的關(guān)系?二、兩個(gè)變量的線性相關(guān)探究一根據(jù)上述數(shù)據(jù),人體二、兩個(gè)變量的線性相關(guān)1、散點(diǎn)圖探究一的散點(diǎn)圖2、正相關(guān)3、負(fù)相關(guān)
兩個(gè)變量成負(fù)相關(guān)時(shí),散點(diǎn)圖有什么特點(diǎn)?請舉一些生活中的變量成負(fù)相關(guān)的例子?!懊麕煶龈咄健笨梢岳斫鉃榻處煹乃皆礁撸瑢W(xué)生的水平也越高。那么,教師的水平與學(xué)生的水平成什么相關(guān)關(guān)系?你能舉出更多的描述生活中兩個(gè)變量的相關(guān)關(guān)系的成語嗎?
表示具有相關(guān)關(guān)系的兩個(gè)變量的一組數(shù)據(jù)的圖形,叫做散點(diǎn)圖.二、兩個(gè)變量的線性相關(guān)1、散點(diǎn)圖探究一的散點(diǎn)圖2、正相關(guān)3、二、兩個(gè)變量的線性相關(guān)二、兩個(gè)變量的線性相關(guān)1、散點(diǎn)圖2、正相關(guān)3、負(fù)相關(guān)根據(jù)下表,作出散點(diǎn)圖(一)復(fù)習(xí)回顧1、散點(diǎn)圖2、正相關(guān)3、負(fù)相關(guān)根據(jù)下表,作出散點(diǎn)圖(一)復(fù)習(xí)(二)回歸直線2、回歸直線
如果散點(diǎn)圖中點(diǎn)的分布從總體上看大致在一條直線附近,我們就稱這兩個(gè)變量之間具有線性相關(guān)關(guān)系。1、變量間的線性相關(guān)上述直線稱為回歸直線。(二)回歸直線2、回歸直線如果散點(diǎn)圖中點(diǎn)(二)回歸直線3、如何求回歸直線的方程探究二幾何畫板探究
實(shí)際上,求回歸直線的關(guān)鍵是如何用數(shù)學(xué)的方法來刻畫”從整體上看,各點(diǎn)到此直線的距離最小”.(二)回歸直線3、如何求回歸直線的方程探究二幾何畫板探究這樣的方法叫做最小二乘法.這樣的方法叫做最小二乘法.問題歸結(jié)為:a,b取什么值時(shí)Q最小,即總體和最小.下面是計(jì)算回歸方程的斜率和截距的一般公式
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年南寧貨運(yùn)從業(yè)資格證模擬考試題庫及答案
- 2025年?duì)I口交通運(yùn)輸從業(yè)資格證怎樣考試
- 2025購買房地產(chǎn)居間合同
- 2024年度互聯(lián)網(wǎng)醫(yī)療服務(wù)平臺(tái)運(yùn)營與推廣合同3篇
- 2024商標(biāo)許可及聯(lián)合營銷推廣合作協(xié)議3篇
- 單位人力資源管理制度匯編大合集
- 2024實(shí)習(xí)教師教育實(shí)習(xí)期間生活服務(wù)保障合同2篇
- 廚房刀具安全使用指南
- 電力工程招投標(biāo)代理協(xié)議范例
- 2024年度全球物流網(wǎng)絡(luò)優(yōu)化服務(wù)合同3篇
- 乙烯裂解汽油加氫裝置設(shè)計(jì)
- 計(jì)劃分配率和實(shí)際分配率_CN
- 小學(xué)語文作文技巧六年級寫人文章寫作指導(dǎo)(課堂PPT)
- NLP時(shí)間線療法
- JJG596-2012《電子式交流電能表檢定規(guī)程》
- 醫(yī)療質(zhì)量檢查分析、總結(jié)、反饋
- 《APQP培訓(xùn)資料》
- 通信線路架空光纜通用圖紙指導(dǎo)
- 家具銷售合同,家居訂購訂貨協(xié)議A4標(biāo)準(zhǔn)版(精編版)
- 食品加工與保藏課件
- 銅芯聚氯乙烯絕緣聚氯乙烯護(hù)套控制電纜檢測報(bào)告可修改
評論
0/150
提交評論