![醫(yī)學(xué)統(tǒng)計(jì)學(xué)英文課件CH01-introdu課件_第1頁(yè)](http://file4.renrendoc.com/view/4f8cdbfd32471ea25cbe1c15680a5523/4f8cdbfd32471ea25cbe1c15680a55231.gif)
![醫(yī)學(xué)統(tǒng)計(jì)學(xué)英文課件CH01-introdu課件_第2頁(yè)](http://file4.renrendoc.com/view/4f8cdbfd32471ea25cbe1c15680a5523/4f8cdbfd32471ea25cbe1c15680a55232.gif)
![醫(yī)學(xué)統(tǒng)計(jì)學(xué)英文課件CH01-introdu課件_第3頁(yè)](http://file4.renrendoc.com/view/4f8cdbfd32471ea25cbe1c15680a5523/4f8cdbfd32471ea25cbe1c15680a55233.gif)
![醫(yī)學(xué)統(tǒng)計(jì)學(xué)英文課件CH01-introdu課件_第4頁(yè)](http://file4.renrendoc.com/view/4f8cdbfd32471ea25cbe1c15680a5523/4f8cdbfd32471ea25cbe1c15680a55234.gif)
![醫(yī)學(xué)統(tǒng)計(jì)學(xué)英文課件CH01-introdu課件_第5頁(yè)](http://file4.renrendoc.com/view/4f8cdbfd32471ea25cbe1c15680a5523/4f8cdbfd32471ea25cbe1c15680a55235.gif)
版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
PostgraduatebooksrecommendedbyDegreeManagementandPostgraduateEducationBureau,MinistryofEducationMedicalStatistics(the2ndedition)
PostgraduatebooksrecommendedArrangement:total72classhours,twoclasseseachweekArrangement:total72classho
chapter1IntroductionKeydefinitionsthestepsformedicalstatisticsBriefhistoryofStatisticschapter1IntroductionStatisticsThesciencefordatacollection,sorting,andanalysis.
Statistics
Definition:thesciencethatstudythecollection,sortingandanalysisofmedicaldata.
Characteristics:
1、Usingthequantitytoreflectthequality2、Usingchanceevents(uncertainty)toreflecttheinevitability(rules)MedicalStatisticsDefinition:thescLearningobjectives:1、BasicprinciplesandmethodsofStatistics(LearningEmphasis)
2、ApplicationStatistics——(ClinicalMedicine,PreventiveMedicine,andHealthCareManagement)MedicalStatisticsLearningobjectives:MedicalStPurpose:atoolformedicalresearchEmphasis:statisticalindicatorsusedforcalculatingorcomparingthequantitativecharacteristicsofpopulationExample:healthexpectation
infantmortalityMedicalStatisticsPurpose:atoolformedicalresSection1.KeydefinitionsSection1.KeydefinitionsⅠvariable,individual,sampleandpopulationⅠvariable,individual,sampleindividual(observatoryunit):thebasicunitinstatisticalresearch,itdependsonthepurpose.variable(indicator):individualcharacteristics
examples:height、weight、gender、bloodtype、treatmenteffectetc.individual(observatoryunitVariablevalue:thevalueofvariablesExamples:height1.65metersweight52kggenderfemalebloodtype“O”laboratorytestnegativetreatmenteffectbetterData:composedofalotofvariablevalues.
Example:DataforbloodglucoseVariablevalue:thevalueofvahomogeneity:commoncharacteristicsforthegivenindividuals
example:theheightsoftheboyswiththeageof7livinginChangsha2004variation:differenceexistingamongthevariablevaluesofhomogeneityindividuals
example:thedifferentheightsoftheboyswiththeageof7livinginChangsha2004homogeneity:commoncharactDefinition:thewholehomogeneityindividualsdeterminedbyspecificpurpose.example:alltheheightsofboysat7thatlivedinChangsha2004finitepopulation:thespace,timeandpopulationforaspecificpopulationhavebeenlimited.infinitepopulation:
notimeandspacelimitsforthepopulation.Suchpopulationsonlyexistinimagination,soitiscalledinfinitepopulation.populationDefinition:thewholehomogdefinition:thesetofvariablevaluesofsomeindividualssampledfromthepopulationatrandom.Example:theheightsof200boysat7fromChangsha.sampledefinition:thesetofvariableSamplingstudySampleinformation(statistic)Populationcharacteristics(parameter)inferencenote:samplingisonlythewaytogetinformation,inferringthepopulationisourpurposeSamplingstudySampleinformatiⅡ、variableanddata
Ⅱ、variableanddatameasurementdata:itisalsocalledasquantitativeornumericaldata.Itsvalueisquantitative.Measurementdataalwayshasmeasurementunits.
example:heightdata,weightdatameasurementdata:itisals
enumerationdata:qualitativeorcountdata.Forsuchdata,itneedstoclassifytheobservationunitsbeforeandcountthem.Itsvalueappeardifferentcharacteristicsandsorts.Binomial:gender,liveordeath,yesorno.Multiple:bloodtype,A、B、O、AB.enumerationdata:qualitativrankeddata:ordinalorsemi-quantitativedata.Itneedtoclassifyobservatoryunitsintodifferentclassesaccordingtheextentbeforecalculatethefrequenciesofeachgroups.Thereexistsobviousdifferencesamongdifferentclasses.example:toevaluatethetreatmenteffectofonedrugonheartfailure,weusetheindicator(cured,better,worsen,dead)toassessthetreatmenteffect.Choosingofstatisticalmethodsdependsonthedatatypetoagreatextent。
rankeddata:ordinalorseDatatransformationQuantitativedata
rankeddata(multiple)binomialdataDatatransformationQuantitativexample:WBC(1/m3)countoffivepersons:
300060005000800012000quantitativevariablelowernormalnormalnormalhigherqualitativevariable
Binomialdata:normal3persons;abnormal2personsMultiplecategorydata:lower1person;normal;3persons;higher1personexample:WBC(1/m3)countoffiveⅢerrorⅢerrordefinition:thedifferencebetweenmeasurementvalueandtruevalue.1、randerror:unstableandchangingatrandom
errorsthatcausedbyuncontrolledfactors.Commonly,randerrorsarereferredtothoseerrorsappearingduringrepeatedmeasurementsandsampling.Often,measurementerrorisextremelylowerthansamplingerror.InStatistics,samplingerroristhemainstudycontents.definition:thedifferencebetw2.Nonrandomerrorisdividedintosystematicerrorandnonsystematicerror:Systematicerror:itisproducedinexperimentandkeepsconstantorchangesaccordingcertainrules.Usually,itsreasonsareknownandcontrollable.Nonsystematicerror(grosserror):itisalwayscausedbyobviousgrosses.2.NonrandomerrorisdividedⅣ、frequencyandprobabilityⅣ、frequencyandprobability
1.Frequency
Giventhesamecondition,repeatatrialforntimesindependently.Amongntrials,Aappearsformtimes,sotheratioofm/niscalledthefrequencyofrandomeventAamongntrials.
1.Frequency
2.probability:thelikelihoodofrandomevents.Giventhesamecondition,repeatatrialforntimesindependently.Amongntrials,Aappearsfor
times,sotheratioof
iscalledthefrequencyofrandomeventA.Asnincreasesgradually,thefrequency
willapproachaconstant.TheconstantiscalledtheprobabilityofrandomeventAandexpressedin.Incommon,itisabbreviatedas.2.probability:theRange:Range:
Frequencyisusedtodescribethesample,whiletheprobabilityforthepopulation.m/nistheestimationof.Astrialsincreases,theestimationvalueismorereliable.醫(yī)學(xué)統(tǒng)計(jì)學(xué)英文課件CH01-introdu課件smallprobabilityevent:Becausetheconclusionsaremadebasedonacertainsignificancelevel,statisticiansalwaysselectasjudgecriterion.Sosucheventswitharecalledsmallprobabilityevents.Itmeansthatsucheventshappenrarelyandcanberegardedasnonoccurrence.smallprobabilityevent:Be
Section2thestepsforstatisticalwork
Section2thestepsforstHere,itmeansstatisticaldesign,themostimportantfactorforasuccessfulresearch.
Itinvolvesthearrangementsfortheprocessofdatacollection,sortingandanalysis.Ⅰdesign
Here,itmeansstatisticaldes
3.controlThreeprinciplesforexperimentdesign1.randomization2.Replication3.controlThreeprinciplobjective:togatheraccurateandreliablerawdata
datasources:
①statisticalreporting
②routinerecords
③purposivesurveysorexperiments
④statisticalyearbookandspecialdatabook
requirements:1、randomization
2、sufficientsamplesizeⅡDatacollectionobjective:togatheraccurateaⅢ.DatasortingItistheprocessthatcleansandsystematizesrawdata.Datasortingpreparestherequireddatafornextstep,dataanalysis.Ⅲ.DatasortingItistheprocesⅣData/statisticalanalysisobjective:toillustratetheruleshiddeninthedata.
Itincludestwoaspects:1.statisticaldescription:itistheprocessofdescribingthecharacteristicsofdatausingstatisticalindicators,statisticalchartsandstatisticaltables.
2.statisticalinference:theprocessofusingsamplestatistictoinferpopulationparameter.Itconsistsof:parameterestimationandhypothesistesting.
ⅣData/statisticalanalysisStatisticaldescriptionStatisticalinferenceindicatorTableandchartParameterestimationHypothesistestingStatisticalanalysisStatisticalStatisticalindicaThanks!Thanks!后面內(nèi)容直接刪除就行資料可以編輯修改使用資料可以編輯修改使用資料僅供參考,實(shí)際情況實(shí)際分析后面內(nèi)容直接刪除就行主要經(jīng)營(yíng):課件設(shè)計(jì),文檔制作,網(wǎng)絡(luò)軟件設(shè)計(jì)、圖文設(shè)計(jì)制作、發(fā)布廣告等秉著以?xún)?yōu)質(zhì)的服務(wù)對(duì)待每一位客戶(hù),做到讓客戶(hù)滿(mǎn)意!致力于數(shù)據(jù)挖掘,合同簡(jiǎn)歷、論文寫(xiě)作、PPT設(shè)計(jì)、計(jì)劃書(shū)、策劃案、學(xué)習(xí)課件、各類(lèi)模板等方方面面,打造全網(wǎng)一站式需求主要經(jīng)營(yíng):課件設(shè)計(jì),文檔制作,網(wǎng)絡(luò)軟件設(shè)計(jì)、圖文設(shè)計(jì)制作、發(fā)感謝您的觀看和下載Theusercandemonstrateonaprojectororcomputer,orprintthepresentationandmakeitintoafilmtobeusedinawiderfield感謝您的觀看和下載TheusercandemonstrPostgraduatebooksrecommendedbyDegreeManagementandPostgraduateEducationBureau,MinistryofEducationMedicalStatistics(the2ndedition)
PostgraduatebooksrecommendedArrangement:total72classhours,twoclasseseachweekArrangement:total72classho
chapter1IntroductionKeydefinitionsthestepsformedicalstatisticsBriefhistoryofStatisticschapter1IntroductionStatisticsThesciencefordatacollection,sorting,andanalysis.
Statistics
Definition:thesciencethatstudythecollection,sortingandanalysisofmedicaldata.
Characteristics:
1、Usingthequantitytoreflectthequality2、Usingchanceevents(uncertainty)toreflecttheinevitability(rules)MedicalStatisticsDefinition:thescLearningobjectives:1、BasicprinciplesandmethodsofStatistics(LearningEmphasis)
2、ApplicationStatistics——(ClinicalMedicine,PreventiveMedicine,andHealthCareManagement)MedicalStatisticsLearningobjectives:MedicalStPurpose:atoolformedicalresearchEmphasis:statisticalindicatorsusedforcalculatingorcomparingthequantitativecharacteristicsofpopulationExample:healthexpectation
infantmortalityMedicalStatisticsPurpose:atoolformedicalresSection1.KeydefinitionsSection1.KeydefinitionsⅠvariable,individual,sampleandpopulationⅠvariable,individual,sampleindividual(observatoryunit):thebasicunitinstatisticalresearch,itdependsonthepurpose.variable(indicator):individualcharacteristics
examples:height、weight、gender、bloodtype、treatmenteffectetc.individual(observatoryunitVariablevalue:thevalueofvariablesExamples:height1.65metersweight52kggenderfemalebloodtype“O”laboratorytestnegativetreatmenteffectbetterData:composedofalotofvariablevalues.
Example:DataforbloodglucoseVariablevalue:thevalueofvahomogeneity:commoncharacteristicsforthegivenindividuals
example:theheightsoftheboyswiththeageof7livinginChangsha2004variation:differenceexistingamongthevariablevaluesofhomogeneityindividuals
example:thedifferentheightsoftheboyswiththeageof7livinginChangsha2004homogeneity:commoncharactDefinition:thewholehomogeneityindividualsdeterminedbyspecificpurpose.example:alltheheightsofboysat7thatlivedinChangsha2004finitepopulation:thespace,timeandpopulationforaspecificpopulationhavebeenlimited.infinitepopulation:
notimeandspacelimitsforthepopulation.Suchpopulationsonlyexistinimagination,soitiscalledinfinitepopulation.populationDefinition:thewholehomogdefinition:thesetofvariablevaluesofsomeindividualssampledfromthepopulationatrandom.Example:theheightsof200boysat7fromChangsha.sampledefinition:thesetofvariableSamplingstudySampleinformation(statistic)Populationcharacteristics(parameter)inferencenote:samplingisonlythewaytogetinformation,inferringthepopulationisourpurposeSamplingstudySampleinformatiⅡ、variableanddata
Ⅱ、variableanddatameasurementdata:itisalsocalledasquantitativeornumericaldata.Itsvalueisquantitative.Measurementdataalwayshasmeasurementunits.
example:heightdata,weightdatameasurementdata:itisals
enumerationdata:qualitativeorcountdata.Forsuchdata,itneedstoclassifytheobservationunitsbeforeandcountthem.Itsvalueappeardifferentcharacteristicsandsorts.Binomial:gender,liveordeath,yesorno.Multiple:bloodtype,A、B、O、AB.enumerationdata:qualitativrankeddata:ordinalorsemi-quantitativedata.Itneedtoclassifyobservatoryunitsintodifferentclassesaccordingtheextentbeforecalculatethefrequenciesofeachgroups.Thereexistsobviousdifferencesamongdifferentclasses.example:toevaluatethetreatmenteffectofonedrugonheartfailure,weusetheindicator(cured,better,worsen,dead)toassessthetreatmenteffect.Choosingofstatisticalmethodsdependsonthedatatypetoagreatextent。
rankeddata:ordinalorseDatatransformationQuantitativedata
rankeddata(multiple)binomialdataDatatransformationQuantitativexample:WBC(1/m3)countoffivepersons:
300060005000800012000quantitativevariablelowernormalnormalnormalhigherqualitativevariable
Binomialdata:normal3persons;abnormal2personsMultiplecategorydata:lower1person;normal;3persons;higher1personexample:WBC(1/m3)countoffiveⅢerrorⅢerrordefinition:thedifferencebetweenmeasurementvalueandtruevalue.1、randerror:unstableandchangingatrandom
errorsthatcausedbyuncontrolledfactors.Commonly,randerrorsarereferredtothoseerrorsappearingduringrepeatedmeasurementsandsampling.Often,measurementerrorisextremelylowerthansamplingerror.InStatistics,samplingerroristhemainstudycontents.definition:thedifferencebetw2.Nonrandomerrorisdividedintosystematicerrorandnonsystematicerror:Systematicerror:itisproducedinexperimentandkeepsconstantorchangesaccordingcertainrules.Usually,itsreasonsareknownandcontrollable.Nonsystematicerror(grosserror):itisalwayscausedbyobviousgrosses.2.NonrandomerrorisdividedⅣ、frequencyandprobabilityⅣ、frequencyandprobability
1.Frequency
Giventhesamecondition,repeatatrialforntimesindependently.Amongntrials,Aappearsformtimes,sotheratioofm/niscalledthefrequencyofrandomeventAamongntrials.
1.Frequency
2.probability:thelikelihoodofrandomevents.Giventhesamecondition,repeatatrialforntimesindependently.Amongntrials,Aappearsfor
times,sotheratioof
iscalledthefrequencyofrandomeventA.Asnincreasesgradually,thefrequency
willapproachaconstant.TheconstantiscalledtheprobabilityofrandomeventAandexpressedin.Incommon,itisabbreviatedas.2.probability:theRange:Range:
Frequencyisusedtodescribethesample,whiletheprobabilityforthepopulation.m/nistheestimationof.Astrialsincreases,theestimationvalueismorereliable.醫(yī)學(xué)統(tǒng)計(jì)學(xué)英文課件CH01-introdu課件smallprobabilityevent:Becausetheconclusionsaremadebasedonacertainsignificancelevel,statisticiansalwaysselectasjudgecriterion.Sosucheventswitharecalledsmallprobabilityevents.Itmeansthatsucheventshappenrarelyandcanberegardedasnonoccurrence.smallprobabilityevent:Be
Section2thestepsforstatisticalwork
Section2thestepsforstHere,itmeansstatisticaldesign,themostimportantfactorforasuccessfulresearch.
Itinvolvesthearrangementsforthe
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 金融服務(wù)居間合同委托書(shū)
- 物業(yè)服務(wù)外包合同
- 鍋爐購(gòu)銷(xiāo)合同書(shū)
- 車(chē)輛租賃保險(xiǎn)服務(wù)合同
- 語(yǔ)言編程及算法操作手冊(cè)
- 水產(chǎn)養(yǎng)殖與漁業(yè)技術(shù)作業(yè)指導(dǎo)書(shū)
- 軟件外包業(yè)軟件開(kāi)發(fā)與項(xiàng)目管理流程優(yōu)化研究
- 綠色農(nóng)業(yè)生產(chǎn)技術(shù)方案
- 保姆雇傭勞動(dòng)合同書(shū)
- 新夫妻離婚協(xié)議書(shū)參考樣板
- (正式版)HGT 6313-2024 化工園區(qū)智慧化評(píng)價(jià)導(dǎo)則
- 每個(gè)孩子都能像花兒一樣開(kāi)放
- 單店爆破促銷(xiāo)活動(dòng)模式精編文檔
- YS/T 34.1-2011高純砷化學(xué)分析方法電感耦合等離子體質(zhì)譜法(ICP-MS)測(cè)定高純砷中雜質(zhì)含量
- LY/T 2016-2012陸生野生動(dòng)物廊道設(shè)計(jì)技術(shù)規(guī)程
- 松下panasonic-視覺(jué)說(shuō)明書(shū)pv200培訓(xùn)
- 單縣煙草專(zhuān)賣(mài)局QC課題多維度降低行政處罰文書(shū)出錯(cuò)率
- 毫針刺法(全)教學(xué)課件
- 金風(fēng)科技-風(fēng)電產(chǎn)業(yè)集團(tuán)-供應(yīng)商現(xiàn)場(chǎng)作業(yè)基礎(chǔ)安全考試附答案
- 人工智能機(jī)器人科學(xué)小報(bào)手抄報(bào)簡(jiǎn)報(bào)
- 三年級(jí)下冊(cè)美術(shù)課件-第1課 燈彩輝映|浙美版 (共19張PPT)
評(píng)論
0/150
提交評(píng)論