2023學年河北省石家莊康福外國語學校高考仿真卷數(shù)學試題(含答案解析)_第1頁
2023學年河北省石家莊康福外國語學校高考仿真卷數(shù)學試題(含答案解析)_第2頁
2023學年河北省石家莊康福外國語學校高考仿真卷數(shù)學試題(含答案解析)_第3頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

2023高考數(shù)學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.定義在上的函數(shù)滿足,則()A.-1 B.0 C.1 D.22.已知的值域為,當正數(shù)a,b滿足時,則的最小值為()A. B.5 C. D.93.已知銳角滿足則()A. B. C. D.4.已知雙曲線的左右焦點分別為,,以線段為直徑的圓與雙曲線在第二象限的交點為,若直線與圓相切,則雙曲線的漸近線方程是()A. B. C. D.5.在直角坐標平面上,點的坐標滿足方程,點的坐標滿足方程則的取值范圍是()A. B. C. D.6.若集合M={1,3},N={1,3,5},則滿足M∪X=N的集合X的個數(shù)為()A.1 B.2C.3 D.47.已知隨機變量滿足,,.若,則()A., B.,C., D.,8.已知集合,,則()A. B.C.或 D.9.已知某幾何體的三視圖如圖所示,其中正視圖與側(cè)視圖是全等的直角三角形,則該幾何體的各個面中,最大面的面積為()A.2 B.5 C. D.10.已知,則下列不等式正確的是()A. B.C. D.11.若雙曲線:的一條漸近線方程為,則()A. B. C. D.12.已知函數(shù),則()A. B.1 C.-1 D.0二、填空題:本題共4小題,每小題5分,共20分。13.設為數(shù)列的前項和,若,則____14.已知函數(shù)的最大值為3,的圖象與y軸的交點坐標為,其相鄰兩條對稱軸間的距離為2,則15.若橢圓:的一個焦點坐標為,則的長軸長為_______.16.已知的終邊過點,若,則__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知直線過橢圓的右焦點,且交橢圓于A,B兩點,線段AB的中點是,(1)求橢圓的方程;(2)過原點的直線l與線段AB相交(不含端點)且交橢圓于C,D兩點,求四邊形面積的最大值.18.(12分)記無窮數(shù)列的前項中最大值為,最小值為,令,則稱是“極差數(shù)列”.(1)若,求的前項和;(2)證明:的“極差數(shù)列”仍是;(3)求證:若數(shù)列是等差數(shù)列,則數(shù)列也是等差數(shù)列.19.(12分)已知,,且.(1)求的最小值;(2)證明:.20.(12分)選修4-2:矩陣與變換(本小題滿分10分)已知矩陣A=(k≠0)的一個特征向量為α=,A的逆矩陣A-1對應的變換將點(3,1)變?yōu)辄c(1,1).求實數(shù)a,k的值.21.(12分)已知的內(nèi)角的對邊分別為,且滿足.(1)求角的大??;(2)若的面積為,求的周長的最小值.22.(10分)如圖,在直三棱柱中,,點P,Q分別為,的中點.求證:(1)PQ平面;(2)平面.

2023學年模擬測試卷參考答案(含詳細解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【答案解析】

推導出,由此能求出的值.【題目詳解】∵定義在上的函數(shù)滿足,∴,故選C.【答案點睛】本題主要考查函數(shù)值的求法,解題時要認真審題,注意函數(shù)性質(zhì)的合理運用,屬于中檔題.2.A【答案解析】

利用的值域為,求出m,再變形,利用1的代換,即可求出的最小值.【題目詳解】解:∵的值域為,∴,∴,∴,當且僅當時取等號,∴的最小值為.故選:A.【答案點睛】本題主要考查了對數(shù)復合函數(shù)的值域運用,同時也考查了基本不等式中“1的運用”,屬于中檔題.3.C【答案解析】

利用代入計算即可.【題目詳解】由已知,,因為銳角,所以,,即.故選:C.【答案點睛】本題考查二倍角的正弦、余弦公式的應用,考查學生的運算能力,是一道基礎題.4.B【答案解析】

先設直線與圓相切于點,根據(jù)題意,得到,再由,根據(jù)勾股定理求出,從而可得漸近線方程.【題目詳解】設直線與圓相切于點,因為是以圓的直徑為斜邊的圓內(nèi)接三角形,所以,又因為圓與直線的切點為,所以,又,所以,因此,因此有,所以,因此漸近線的方程為.故選B【答案點睛】本題主要考查雙曲線的漸近線方程,熟記雙曲線的簡單性質(zhì)即可,屬于??碱}型.5.B【答案解析】

由點的坐標滿足方程,可得在圓上,由坐標滿足方程,可得在圓上,則求出兩圓內(nèi)公切線的斜率,利用數(shù)形結(jié)合可得結(jié)果.【題目詳解】點的坐標滿足方程,在圓上,在坐標滿足方程,在圓上,則作出兩圓的圖象如圖,設兩圓內(nèi)公切線為與,由圖可知,設兩圓內(nèi)公切線方程為,則,圓心在內(nèi)公切線兩側(cè),,可得,,化為,,即,,的取值范圍,故選B.【答案點睛】本題主要考查直線的斜率、直線與圓的位置關(guān)系以及數(shù)形結(jié)合思想的應用,屬于綜合題.數(shù)形結(jié)合是根據(jù)數(shù)量與圖形之間的對應關(guān)系,通過數(shù)與形的相互轉(zhuǎn)化來解決數(shù)學問題的一種重要思想方法,尤其在解決選擇題、填空題時發(fā)揮著奇特功效,大大提高了解題能力與速度.運用這種方法的關(guān)鍵是運用這種方法的關(guān)鍵是正確作出曲線圖象,充分利用數(shù)形結(jié)合的思想方法能夠使問題化難為簡,并迎刃而解.6.D【答案解析】可以是共4個,選D.7.B【答案解析】

根據(jù)二項分布的性質(zhì)可得:,再根據(jù)和二次函數(shù)的性質(zhì)求解.【題目詳解】因為隨機變量滿足,,.所以服從二項分布,由二項分布的性質(zhì)可得:,因為,所以,由二次函數(shù)的性質(zhì)可得:,在上單調(diào)遞減,所以.故選:B【答案點睛】本題主要考查二項分布的性質(zhì)及二次函數(shù)的性質(zhì)的應用,還考查了理解辨析的能力,屬于中檔題.8.D【答案解析】

首先求出集合,再根據(jù)補集的定義計算可得;【題目詳解】解:∵,解得∴,∴.故選:D【答案點睛】本題考查補集的概念及運算,一元二次不等式的解法,屬于基礎題.9.D【答案解析】

根據(jù)三視圖還原出幾何體,找到最大面,再求面積.【題目詳解】由三視圖可知,該幾何體是一個三棱錐,如圖所示,將其放在一個長方體中,并記為三棱錐.,,,故最大面的面積為.選D.【答案點睛】本題主要考查三視圖的識別,復雜的三視圖還原為幾何體時,一般借助長方體來實現(xiàn).10.D【答案解析】

利用特殊值代入法,作差法,排除不符合條件的選項,得到符合條件的選項.【題目詳解】已知,賦值法討論的情況:(1)當時,令,,則,,排除B、C選項;(2)當時,令,,則,排除A選項.故選:D.【答案點睛】比較大小通常采用作差法,本題主要考查不等式與不等關(guān)系,不等式的基本性質(zhì),利用特殊值代入法,排除不符合條件的選項,得到符合條件的選項,是一種簡單有效的方法,屬于中等題.11.A【答案解析】

根據(jù)雙曲線的漸近線列方程,解方程求得的值.【題目詳解】由題意知雙曲線的漸近線方程為,可化為,則,解得.故選:A【答案點睛】本小題主要考查雙曲線的漸近線,屬于基礎題.12.A【答案解析】

由函數(shù),求得,進而求得的值,得到答案.【題目詳解】由題意函數(shù),則,所以,故選A.【答案點睛】本題主要考查了分段函數(shù)的求值問題,其中解答中根據(jù)分段函數(shù)的解析式,代入求解是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【答案解析】

當時,由,解得,當時,,兩式相減可得,即,可得數(shù)列是等比數(shù)列再求通項公式.【題目詳解】當時,,即,當時,,兩式相減可得,即,即,故數(shù)列是以為首項,為公比的等比數(shù)列,所以.故答案為:【答案點睛】本題考查數(shù)列的前項和與通項公式的關(guān)系,還考查運算求解能力以及化歸與轉(zhuǎn)化思想,屬于基礎題.14.【答案解析】,由題意,得,解得,則的周期為4,且,所以.考點:三角函數(shù)的圖像與性質(zhì).15.【答案解析】

由焦點坐標得從而可求出,繼而得到橢圓的方程,即可求出長軸長.【題目詳解】解:因為一個焦點坐標為,則,即,解得或由表示的是橢圓,則,所以,則橢圓方程為所以.故答案為:.【答案點睛】本題考查了橢圓的標準方程,考查了橢圓的幾何意義.本題的易錯點是忽略,從而未對的兩個值進行取舍.16.【答案解析】

】由題意利用任意角的三角函數(shù)的定義,求得的值.【題目詳解】∵的終邊過點,若,.即答案為-2.【答案點睛】本題主要考查任意角的三角函數(shù)的定義和誘導公式,屬基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)(2)【答案解析】

(1)由直線可得橢圓右焦點的坐標為,由中點可得,且由斜率公式可得,由點在橢圓上,則,二者作差,進而代入整理可得,即可求解;(2)設直線,點到直線的距離為,則四邊形的面積為,將代入橢圓方程,再利用弦長公式求得,利用點到直線距離求得,根據(jù)直線l與線段AB(不含端點)相交,可得,即,進而整理換元,由二次函數(shù)性質(zhì)求解最值即可.【題目詳解】(1)直線與x軸交于點,所以橢圓右焦點的坐標為,故,因為線段AB的中點是,設,則,且,又,作差可得,則,得又,所以,因此橢圓的方程為.(2)由(1)聯(lián)立,解得或,不妨令,易知直線l的斜率存在,設直線,代入,得,解得或,設,則,則,因為到直線的距離分別是,由于直線l與線段AB(不含端點)相交,所以,即,所以,四邊形的面積,令,,則,所以,當,即時,,因此四邊形面積的最大值為.【答案點睛】本題考查求橢圓的標準方程,考查橢圓中的四邊形面積問題,考查直線與橢圓的位置關(guān)系的應用,考查運算能力.18.(1)(2)證明見解析(3)證明見解析【答案解析】

(1)由是遞增數(shù)列,得,由此能求出的前項和.(2)推導出,,由此能證明的“極差數(shù)列”仍是.(3)證當數(shù)列是等差數(shù)列時,設其公差為,,是一個單調(diào)遞增數(shù)列,從而,,由,,,分類討論,能證明若數(shù)列是等差數(shù)列,則數(shù)列也是等差數(shù)列.【題目詳解】(1)解:∵無窮數(shù)列的前項中最大值為,最小值為,,,是遞增數(shù)列,∴,∴的前項和.(2)證明:∵,,∴,∴,∵,∴,∴的“極差數(shù)列”仍是(3)證明:當數(shù)列是等差數(shù)列時,設其公差為,,根據(jù),的定義,得:,,且兩個不等式中至少有一個取等號,當時,必有,∴,∴是一個單調(diào)遞增數(shù)列,∴,,∴,∴,∴是等差數(shù)列,當時,則必有,∴,∴是一個單調(diào)遞減數(shù)列,∴,,∴,∴.∴是等差數(shù)列,當時,,∵,中必有一個為0,根據(jù)上式,一個為0,為一個必為0,∴,,∴數(shù)列是常數(shù)數(shù)列,則數(shù)列是等差數(shù)列.綜上,若數(shù)列是等差數(shù)列,則數(shù)列也是等差數(shù)列.【答案點睛】本小題主要考查新定義數(shù)列的理解和運用,考查等差數(shù)列的證明,考查數(shù)列的單調(diào)性,考查化歸與轉(zhuǎn)化的數(shù)學思想方法,屬于難題.19.(1)(2)證明見解析【答案解析】

(1)利用基本不等式即可求得最小值;(2)關(guān)鍵是配湊系數(shù),進而利用基本不等式得證.【題目詳解】(1),當且僅當“”時取等號,故的最小值為;(2),當且僅當時取等號,此時.故.【答案點睛】本題主要考查基本不等式的運用,屬于基礎題.20.解:設特征向量為α=對應的特征值為λ,則=λ,即因為k≠0,所以a=2.5分因為,所以A=,即=,所以2+k=3,解得k=2.綜上,a=2,k=2.20分【答案解析】試題分析:由特征向量求矩陣A,由逆矩陣求k考點:特征向量,逆矩陣點評:本題主要考查了二階矩陣,以及特征值與特征向量的計算,考查逆矩陣.21.(1)(2)【答案解析】

(1)因為,所以,由余弦定理得,化簡得,可得,解得,又因為,所以.(6分)(2)因為,所以,則(當且僅當時,取等號).由(1)得(當且僅當時,取等號),解得.所以(當且僅當時,取等號),所以的周長的最

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論