版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023高考數(shù)學(xué)模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知定點都在平面內(nèi),定點是內(nèi)異于的動點,且,那么動點在平面內(nèi)的軌跡是()A.圓,但要去掉兩個點 B.橢圓,但要去掉兩個點C.雙曲線,但要去掉兩個點 D.拋物線,但要去掉兩個點2.定義在上的偶函數(shù),對,,且,有成立,已知,,,則,,的大小關(guān)系為()A. B. C. D.3.一個空間幾何體的正視圖是長為4,寬為的長方形,側(cè)視圖是邊長為2的等邊三角形,俯視圖如圖所示,則該幾何體的體積為()A. B. C. D.4.已知為虛數(shù)單位,復(fù)數(shù)滿足,則復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.已知復(fù)數(shù)z=2i1-i,則A.第一象限 B.第二象限 C.第三象限 D.第四象限6.已知直線:與橢圓交于、兩點,與圓:交于、兩點.若存在,使得,則橢圓的離心率的取值范圍為()A. B. C. D.7.設(shè)等差數(shù)列的前n項和為,若,則()A. B. C.7 D.28.已知數(shù)列為等差數(shù)列,為其前項和,,則()A. B. C. D.9.已知拋物線的焦點為,準線與軸的交點為,點為拋物線上任意一點的平分線與軸交于,則的最大值為A. B. C. D.10.若非零實數(shù)、滿足,則下列式子一定正確的是()A. B.C. D.11.已知圓與拋物線的準線相切,則的值為()A.1 B.2 C. D.412.設(shè)復(fù)數(shù)滿足,則在復(fù)平面內(nèi)的對應(yīng)點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空題:本題共4小題,每小題5分,共20分。13.的角所對的邊分別為,且,,若,則的值為__________.14.已知函數(shù),若,則實數(shù)的取值范圍為__________.15.已知雙曲線的一條漸近線為,則焦點到這條漸近線的距離為_____.16.設(shè)是公差不為0的等差數(shù)列的前n項和,且,則______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)2018年反映社會現(xiàn)實的電影《我不是藥神》引起了很大的轟動,治療特種病的創(chuàng)新藥研發(fā)成了當務(wù)之急.為此,某藥企加大了研發(fā)投入,市場上治療一類慢性病的特效藥品的研發(fā)費用(百萬元)和銷量(萬盒)的統(tǒng)計數(shù)據(jù)如下:研發(fā)費用(百萬元)2361013151821銷量(萬盒)1122.53.53.54.56(1)求與的相關(guān)系數(shù)精確到0.01,并判斷與的關(guān)系是否可用線性回歸方程模型擬合?(規(guī)定:時,可用線性回歸方程模型擬合);(2)該藥企準備生產(chǎn)藥品的三類不同的劑型,,,并對其進行兩次檢測,當?shù)谝淮螜z測合格后,才能進行第二次檢測.第一次檢測時,三類劑型,,合格的概率分別為,,,第二次檢測時,三類劑型,,合格的概率分別為,,.兩次檢測過程相互獨立,設(shè)經(jīng)過兩次檢測后,,三類劑型合格的種類數(shù)為,求的數(shù)學(xué)期望.附:(1)相關(guān)系數(shù)(2),,,.18.(12分)已知六面體如圖所示,平面,,,,,,是棱上的點,且滿足.(1)求證:直線平面;(2)求二面角的正弦值.19.(12分)如圖,在四棱錐中,底面是邊長為2的菱形,,平面平面,點為棱的中點.(Ⅰ)在棱上是否存在一點,使得平面,并說明理由;(Ⅱ)當二面角的余弦值為時,求直線與平面所成的角.20.(12分)在中,角,,的對邊分別為,,,已知.(1)若,,成等差數(shù)列,求的值;(2)是否存在滿足為直角?若存在,求的值;若不存在,請說明理由.21.(12分)已知函數(shù).(1)討論的單調(diào)性;(2)若在定義域內(nèi)是增函數(shù),且存在不相等的正實數(shù),使得,證明:.22.(10分)近幾年一種新奇水果深受廣大消費者的喜愛,一位農(nóng)戶發(fā)揮聰明才智,把這種露天種植的新奇水果搬到了大棚里,收到了很好的經(jīng)濟效益.根據(jù)資料顯示,產(chǎn)出的新奇水果的箱數(shù)x(單位:十箱)與成本y(單位:千元)的關(guān)系如下:x13412y51.522.58y與x可用回歸方程(其中,為常數(shù))進行模擬.(Ⅰ)若該農(nóng)戶產(chǎn)出的該新奇水果的價格為150元/箱,試預(yù)測該新奇水果100箱的利潤是多少元.|.(Ⅱ)據(jù)統(tǒng)計,10月份的連續(xù)11天中該農(nóng)戶每天為甲地配送的該新奇水果的箱數(shù)的頻率分布直方圖如圖所示.(i)若從箱數(shù)在內(nèi)的天數(shù)中隨機抽取2天,估計恰有1天的水果箱數(shù)在內(nèi)的概率;(ⅱ)求這11天該農(nóng)戶每天為甲地配送的該新奇水果的箱數(shù)的平均值.(每組用該組區(qū)間的中點值作代表)參考數(shù)據(jù)與公式:設(shè),則0.541.81.530.45線性回歸直線中,,.
2023學(xué)年模擬測試卷參考答案(含詳細解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【答案解析】
根據(jù)題意可得,即知C在以AB為直徑的圓上.【題目詳解】,,,又,,平面,又平面,故在以為直徑的圓上,又是內(nèi)異于的動點,所以的軌跡是圓,但要去掉兩個點A,B故選:A【答案點睛】本題主要考查了線面垂直、線線垂直的判定,圓的性質(zhì),軌跡問題,屬于中檔題.2.A【答案解析】
根據(jù)偶函數(shù)的性質(zhì)和單調(diào)性即可判斷.【題目詳解】解:對,,且,有在上遞增因為定義在上的偶函數(shù)所以在上遞減又因為,,所以故選:A【答案點睛】考查偶函數(shù)的性質(zhì)以及單調(diào)性的應(yīng)用,基礎(chǔ)題.3.B【答案解析】
由三視圖確定原幾何體是正三棱柱,由此可求得體積.【題目詳解】由題意原幾何體是正三棱柱,.故選:B.【答案點睛】本題考查三視圖,考查棱柱的體積.解題關(guān)鍵是由三視圖不愿出原幾何體.4.B【答案解析】
求出復(fù)數(shù),得出其對應(yīng)點的坐標,確定所在象限.【題目詳解】由題意,對應(yīng)點坐標為,在第二象限.故選:B.【答案點睛】本題考查復(fù)數(shù)的幾何意義,考查復(fù)數(shù)的除法運算,屬于基礎(chǔ)題.5.C【答案解析】分析:根據(jù)復(fù)數(shù)的運算,求得復(fù)數(shù)z,再利用復(fù)數(shù)的表示,即可得到復(fù)數(shù)對應(yīng)的點,得到答案.詳解:由題意,復(fù)數(shù)z=2i1-i所以復(fù)數(shù)z在復(fù)平面內(nèi)對應(yīng)的點的坐標為(-1,-1),位于復(fù)平面內(nèi)的第三象限,故選C.點睛:本題主要考查了復(fù)數(shù)的四則運算及復(fù)數(shù)的表示,其中根據(jù)復(fù)數(shù)的四則運算求解復(fù)數(shù)z是解答的關(guān)鍵,著重考查了推理與運算能力.6.A【答案解析】
由題意可知直線過定點即為圓心,由此得到坐標的關(guān)系,再根據(jù)點差法得到直線的斜率與坐標的關(guān)系,由此化簡并求解出離心率的取值范圍.【題目詳解】設(shè),且線過定點即為的圓心,因為,所以,又因為,所以,所以,所以,所以,所以,所以,所以.故選:A.【答案點睛】本題考查橢圓與圓的綜合應(yīng)用,著重考查了橢圓離心率求解以及點差法的運用,難度一般.通過運用點差法達到“設(shè)而不求”的目的,大大簡化運算.7.B【答案解析】
根據(jù)等差數(shù)列的性質(zhì)并結(jié)合已知可求出,再利用等差數(shù)列性質(zhì)可得,即可求出結(jié)果.【題目詳解】因為,所以,所以,所以,故選:B【答案點睛】本題主要考查等差數(shù)列的性質(zhì)及前項和公式,屬于基礎(chǔ)題.8.B【答案解析】
利用等差數(shù)列的性質(zhì)求出的值,然后利用等差數(shù)列求和公式以及等差中項的性質(zhì)可求出的值.【題目詳解】由等差數(shù)列的性質(zhì)可得,.故選:B.【答案點睛】本題考查等差數(shù)列基本性質(zhì)的應(yīng)用,同時也考查了等差數(shù)列求和,考查計算能力,屬于基礎(chǔ)題.9.A【答案解析】
求出拋物線的焦點坐標,利用拋物線的定義,轉(zhuǎn)化求出比值,,求出等式左邊式子的范圍,將等式右邊代入,從而求解.【題目詳解】解:由題意可得,焦點F(1,0),準線方程為x=?1,
過點P作PM垂直于準線,M為垂足,
由拋物線的定義可得|PF|=|PM|=x+1,
記∠KPF的平分線與軸交于
根據(jù)角平分線定理可得,,當時,,當時,,,綜上:.故選:A.【答案點睛】本題主要考查拋物線的定義、性質(zhì)的簡單應(yīng)用,直線的斜率公式、利用數(shù)形結(jié)合進行轉(zhuǎn)化是解決本題的關(guān)鍵.考查學(xué)生的計算能力,屬于中檔題.10.C【答案解析】
令,則,,將指數(shù)式化成對數(shù)式得、后,然后取絕對值作差比較可得.【題目詳解】令,則,,,,,因此,.故選:C.【答案點睛】本題考查了利用作差法比較大小,同時也考查了指數(shù)式與對數(shù)式的轉(zhuǎn)化,考查推理能力,屬于中等題.11.B【答案解析】
因為圓與拋物線的準線相切,則圓心為(3,0),半徑為4,根據(jù)相切可知,圓心到直線的距離等于半徑,可知的值為2,選B.【題目詳解】請在此輸入詳解!12.C【答案解析】
化簡得到,得到答案.【題目詳解】,故,對應(yīng)點在第三象限.故選:.【答案點睛】本題考查了復(fù)數(shù)的化簡和對應(yīng)象限,意在考查學(xué)生的計算能力.二、填空題:本題共4小題,每小題5分,共20分。13.【答案解析】
先利用余弦定理求出,再用正弦定理求出并把轉(zhuǎn)化為與邊有關(guān)的等式,結(jié)合可求的值.【題目詳解】因為,故,因為,所以.由正弦定理可得三角形外接圓的半徑滿足,所以即.因為,解得或(舍).故答案為:.【答案點睛】本題考查正弦定理、余弦定理在解三角形中的應(yīng)用,注意結(jié)合求解目標對所得的方程組變形整合后整體求解,本題屬于中檔題.14.【答案解析】
畫圖分析可得函數(shù)是偶函數(shù),且在上單調(diào)遞減,利用偶函數(shù)性質(zhì)和單調(diào)性可解.【題目詳解】作出函數(shù)的圖如下所示,觀察可知,函數(shù)為偶函數(shù),且在上單調(diào)遞增,在上單調(diào)遞減,故,故實數(shù)的取值范圍為.故答案為:【答案點睛】本題考查利用函數(shù)奇偶性及單調(diào)性解不等式.函數(shù)奇偶性的常用結(jié)論:(1)如果函數(shù)是偶函數(shù),那么.(2)奇函數(shù)在兩個對稱的區(qū)間上具有相同的單調(diào)性;偶函數(shù)在兩個對稱的區(qū)間上具有相反的單調(diào)性.15.2.【答案解析】
由雙曲線的一條漸近線為,解得.求出雙曲線的右焦點,利用點到直線的距離公式求解即可.【題目詳解】雙曲線的一條漸近線為解得:雙曲線的右焦點為焦點到這條漸近線的距離為:本題正確結(jié)果:【答案點睛】本題考查了雙曲線和的標準方程及其性質(zhì),涉及到點到直線距離公式的考查,屬于基礎(chǔ)題.16.18【答案解析】
將已知已知轉(zhuǎn)化為的形式,化簡后求得,利用等差數(shù)列前公式化簡,由此求得表達式的值.【題目詳解】因為,所以.故填:.【答案點睛】本題考查等差數(shù)列基本量的計算,考查等差數(shù)列的性質(zhì)以及求和,考查運算求解能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)0.98;可用線性回歸模型擬合.(2)【答案解析】
(1)根據(jù)題目提供的數(shù)據(jù)求出,代入相關(guān)系數(shù)公式求出,根據(jù)的大小來確定結(jié)果;(2)求出藥品的每類劑型經(jīng)過兩次檢測后合格的概率,發(fā)現(xiàn)它們相同,那么經(jīng)過兩次檢測后,,三類劑型合格的種類數(shù)為,服從二項分布,利用二項分布的期望公式求解即可.【題目詳解】解:(1)由題意可知,,由公式,,∴與的關(guān)系可用線性回歸模型擬合;(2)藥品的每類劑型經(jīng)過兩次檢測后合格的概率分別為,,,由題意,,.【答案點睛】本題考查相關(guān)系數(shù)的求解,考查二項分布的期望,是中檔題.18.(1)證明見解析(2)【答案解析】
(1)連接,設(shè),連接.通過證明,證得直線平面.(2)建立空間直角坐標系,利用平面和平面的法向量,計算出二面角的正弦值.【題目詳解】(1)連接,設(shè),連接,因為,所以,所以,在中,因為,所以,且平面,故平面.(2)因為,,,,,所以,因為,平面,所以平面,所以,,取所在直線為軸,取所在直線為軸,取所在直線為軸,建立如圖所示的空間直角坐標系,由已知可得,,,,所以,因為,所以,所以點的坐標為,所以,,設(shè)為平面的法向量,則,令,解得,,所以,即為平面的一個法向量.,同理可求得平面的一個法向量為所以所以二面角的正弦值為【答案點睛】本小題主要考查線面平行的證明,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.19.(1)見解析(2)【答案解析】
(Ⅰ)取的中點,連結(jié)、,得到故且,進而得到,利用線面平行的判定定理,即可證得平面.(Ⅱ)以為坐標原點建立如圖空間直角坐標系,設(shè),求得平面的法向量為,和平面的法向量,利用向量的夾角公式,求得,進而得到為直線與平面所成的角,即可求解.【題目詳解】(Ⅰ)在棱上存在點,使得平面,點為棱的中點.理由如下:取的中點,連結(jié)、,由題意,且,且,故且.所以,四邊形為平行四邊形.所以,,又平面,平面,所以,平面.(Ⅱ)由題意知為正三角形,所以,亦即,又,所以,且平面平面,平面平面,所以平面,故以為坐標原點建立如圖空間直角坐標系,設(shè),則由題意知,,,,,,設(shè)平面的法向量為,則由得,令,則,,所以取,顯然可取平面的法向量,由題意:,所以.由于平面,所以在平面內(nèi)的射影為,所以為直線與平面所成的角,易知在中,,從而,所以直線與平面所成的角為.【答案點睛】本題考查了立體幾何中的面面垂直的判定和直線與平面所成角的求解問題,意在考查學(xué)生的空間想象能力和邏輯推理能力;解答本題關(guān)鍵在于能利用直線與直線、直線與平面、平面與平面關(guān)系的相互轉(zhuǎn)化,通過嚴密推理,明確角的構(gòu)成,著重考查了分析問題和解答問題的能力.20.見解析【答案解析】
(1)因為,,成等差數(shù)列,所以,由余弦定理可得,因為,所以,即,所以.(2)若B為直角,則,,由及正弦定理可得,所以,即,上式兩邊同時平方,可得,所以(*).又,所以,,所以,與(*)矛盾,所以不存在滿足為直角.21.(1)當時,在上遞增,在上遞減;當時,在上遞增,在上遞減,在上遞增;當時,在上遞增;當時,在上遞增,在上遞減,在上遞增;(2)證明見解析【答案解析】
(1)對求導(dǎo),分,,進行討論,可得的單調(diào)性;(2)在定義域內(nèi)是是增函數(shù),由(1)可知,,設(shè),可得,則,設(shè),對求導(dǎo),利用其單調(diào)性可證明.【題目詳解】解:的定義域為,因為,所以,當時,令,得,令,得;當時,則,令,得,或,令,得;當時,,當時,則,令,得;綜上所述,當時,在上
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025尚智喜服飾代理合同范本
- 2025年度智能家居門系統(tǒng)安裝及售后服務(wù)合同范本4篇
- 二零二四年度中小企業(yè)市場拓展與品牌合作合同3篇
- 二婚再婚2024年度婚姻財產(chǎn)規(guī)劃合同3篇
- 2025年度高速公路建設(shè)承包合同范本模板4篇
- 2025年度牧業(yè)廢棄物處理與承包運營合同4篇
- 2025年度古建筑修復(fù)專業(yè)木工施工合同4篇
- 2025年度商業(yè)地產(chǎn)租賃保證金合同協(xié)議書8篇
- 2025供貨合同協(xié)議書格式參考
- 2025版企業(yè)信息數(shù)據(jù)托管服務(wù)合同3篇
- 2023-2024學(xué)年度人教版一年級語文上冊寒假作業(yè)
- 軟件運維考核指標
- 空氣動力學(xué)仿真技術(shù):格子玻爾茲曼方法(LBM)簡介
- 對表達方式進行選擇與運用
- GB/T 18488-2024電動汽車用驅(qū)動電機系統(tǒng)
- 投資固定分紅協(xié)議
- 高二物理題庫及答案
- 職業(yè)發(fā)展展示園林
- 七年級下冊英語單詞默寫表直接打印
- 2024版醫(yī)療安全不良事件培訓(xùn)講稿
- 中學(xué)英語教學(xué)設(shè)計PPT完整全套教學(xué)課件
評論
0/150
提交評論