2023年廣東省深圳市高三下學(xué)期第一次聯(lián)考數(shù)學(xué)試卷含解析_第1頁
2023年廣東省深圳市高三下學(xué)期第一次聯(lián)考數(shù)學(xué)試卷含解析_第2頁
2023年廣東省深圳市高三下學(xué)期第一次聯(lián)考數(shù)學(xué)試卷含解析_第3頁
2023年廣東省深圳市高三下學(xué)期第一次聯(lián)考數(shù)學(xué)試卷含解析_第4頁
2023年廣東省深圳市高三下學(xué)期第一次聯(lián)考數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023高考數(shù)學(xué)模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)x、y、z是空間中不同的直線或平面,對下列四種情形:①x、y、z均為直線;②x、y是直線,z是平面;③z是直線,x、y是平面;④x、y、z均為平面.其中使“且”為真命題的是()A.③④ B.①③ C.②③ D.①②2.根據(jù)最小二乘法由一組樣本點(其中),求得的回歸方程是,則下列說法正確的是()A.至少有一個樣本點落在回歸直線上B.若所有樣本點都在回歸直線上,則變量同的相關(guān)系數(shù)為1C.對所有的解釋變量(),的值一定與有誤差D.若回歸直線的斜率,則變量x與y正相關(guān)3.一袋中裝有個紅球和個黑球(除顏色外無區(qū)別),任取球,記其中黑球數(shù)為,則為()A. B. C. D.4.若復(fù)數(shù)滿足,其中為虛數(shù)單位,是的共軛復(fù)數(shù),則復(fù)數(shù)()A. B. C.4 D.55.已知函數(shù)(),若函數(shù)在上有唯一零點,則的值為()A.1 B.或0 C.1或0 D.2或06.已知函數(shù),則函數(shù)的零點所在區(qū)間為()A. B. C. D.7.已知函數(shù),,若對任意的總有恒成立,記的最小值為,則最大值為()A.1 B. C. D.8.斜率為1的直線l與橢圓相交于A、B兩點,則的最大值為A.2 B. C. D.9.設(shè),則,則()A. B. C. D.10.已知(),i為虛數(shù)單位,則()A. B.3 C.1 D.511.是恒成立的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件12.已知,則“m⊥n”是“m⊥l”的A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.在平面直角坐標(biāo)系中,雙曲線的一條準(zhǔn)線與兩條漸近線所圍成的三角形的面積為______.14.設(shè)為數(shù)列的前項和,若,則____15.已知命題:,,那么是__________.16.若的展開式中各項系數(shù)之和為32,則展開式中x的系數(shù)為_____三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)解不等式;(2)使得,求實數(shù)的取值范圍.18.(12分)古人云:“腹有詩書氣自華.”為響應(yīng)全民閱讀,建設(shè)書香中國,校園讀書活動的熱潮正在興起.某校為統(tǒng)計學(xué)生一周課外讀書的時間,從全校學(xué)生中隨機抽取名學(xué)生進行問卷調(diào)査,統(tǒng)計了他們一周課外讀書時間(單位:)的數(shù)據(jù)如下:一周課外讀書時間/合計頻數(shù)46101214244634頻率0.020.030.050.060.070.120.250.171(1)根據(jù)表格中提供的數(shù)據(jù),求,,的值并估算一周課外讀書時間的中位數(shù).(2)如果讀書時間按,,分組,用分層抽樣的方法從名學(xué)生中抽取20人.①求每層應(yīng)抽取的人數(shù);②若從,中抽出的學(xué)生中再隨機選取2人,求這2人不在同一層的概率.19.(12分)已知公差不為零的等差數(shù)列的前n項和為,,是與的等比中項.(1)求;(2)設(shè)數(shù)列滿足,,求數(shù)列的通項公式.20.(12分)已知函數(shù),(其中,).(1)求函數(shù)的最小值.(2)若,求證:.21.(12分)已知數(shù)列的前項和為,.(1)求數(shù)列的通項公式;(2)若,為數(shù)列的前項和.求證:.22.(10分)若函數(shù)為奇函數(shù),且時有極小值.(1)求實數(shù)的值與實數(shù)的取值范圍;(2)若恒成立,求實數(shù)的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】

①舉反例,如直線x、y、z位于正方體的三條共點棱時②用垂直于同一平面的兩直線平行判斷.③用垂直于同一直線的兩平面平行判斷.④舉例,如x、y、z位于正方體的三個共點側(cè)面時.【詳解】①當(dāng)直線x、y、z位于正方體的三條共點棱時,不正確;②因為垂直于同一平面的兩直線平行,正確;③因為垂直于同一直線的兩平面平行,正確;④如x、y、z位于正方體的三個共點側(cè)面時,不正確.故選:C.【點睛】此題考查立體幾何中線面關(guān)系,選擇題一般可通過特殊值法進行排除,屬于簡單題目.2.D【解析】

對每一個選項逐一分析判斷得解.【詳解】回歸直線必過樣本數(shù)據(jù)中心點,但樣本點可能全部不在回歸直線上﹐故A錯誤;所有樣本點都在回歸直線上,則變量間的相關(guān)系數(shù)為,故B錯誤;若所有的樣本點都在回歸直線上,則的值與相等,故C錯誤;相關(guān)系數(shù)r與符號相同,若回歸直線的斜率,則,樣本點分布應(yīng)從左到右是上升的,則變量x與y正相關(guān),故D正確.故選D.【點睛】本題主要考查線性回歸方程的性質(zhì),意在考查學(xué)生對該知識的理解掌握水平和分析推理能力.3.A【解析】

由題意可知,隨機變量的可能取值有、、、,計算出隨機變量在不同取值下的概率,進而可求得隨機變量的數(shù)學(xué)期望值.【詳解】由題意可知,隨機變量的可能取值有、、、,則,,,.因此,隨機變量的數(shù)學(xué)期望為.故選:A.【點睛】本題考查隨機變量數(shù)學(xué)期望的計算,考查計算能力,屬于基礎(chǔ)題.4.D【解析】

根據(jù)復(fù)數(shù)的四則運算法則先求出復(fù)數(shù)z,再計算它的模長.【詳解】解:復(fù)數(shù)z=a+bi,a、b∈R;∵2z,∴2(a+bi)﹣(a﹣bi)=,即,解得a=3,b=4,∴z=3+4i,∴|z|.故選D.【點睛】本題主要考查了復(fù)數(shù)的計算問題,要求熟練掌握復(fù)數(shù)的四則運算以及復(fù)數(shù)長度的計算公式,是基礎(chǔ)題.5.C【解析】

求出函數(shù)的導(dǎo)函數(shù),當(dāng)時,只需,即,令,利用導(dǎo)數(shù)求其單調(diào)區(qū)間,即可求出參數(shù)的值,當(dāng)時,根據(jù)函數(shù)的單調(diào)性及零點存在性定理可判斷;【詳解】解:∵(),∴,∴當(dāng)時,由得,則在上單調(diào)遞減,在上單調(diào)遞增,所以是極小值,∴只需,即.令,則,∴函數(shù)在上單調(diào)遞增.∵,∴;當(dāng)時,,函數(shù)在上單調(diào)遞減,∵,,函數(shù)在上有且只有一個零點,∴的值是1或0.故選:C【點睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的零點問題,零點存在性定理的應(yīng)用,屬于中檔題.6.A【解析】

首先求得時,的取值范圍.然后求得時,的單調(diào)性和零點,令,根據(jù)“時,的取值范圍”得到,利用零點存在性定理,求得函數(shù)的零點所在區(qū)間.【詳解】當(dāng)時,.當(dāng)時,為增函數(shù),且,則是唯一零點.由于“當(dāng)時,.”,所以令,得,因為,,所以函數(shù)的零點所在區(qū)間為.故選:A【點睛】本小題主要考查分段函數(shù)的性質(zhì),考查符合函數(shù)零點,考查零點存在性定理,考查函數(shù)的單調(diào)性,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.7.C【解析】

對任意的總有恒成立,因為,對恒成立,可得,令,可得,結(jié)合已知,即可求得答案.【詳解】對任意的總有恒成立,對恒成立,令,可得令,得當(dāng),當(dāng),,故令,得當(dāng)時,當(dāng),當(dāng)時,故選:C.【點睛】本題主要考查了根據(jù)不等式恒成立求最值問題,解題關(guān)鍵是掌握不等式恒成立的解法和導(dǎo)數(shù)求函數(shù)單調(diào)性的解法,考查了分析能力和計算能力,屬于難題.8.C【解析】

設(shè)出直線的方程,代入橢圓方程中消去y,根據(jù)判別式大于0求得t的范圍,進而利用弦長公式求得|AB|的表達式,利用t的范圍求得|AB|的最大值.【詳解】解:設(shè)直線l的方程為y=x+t,代入y2=1,消去y得x2+2tx+t2﹣1=0,由題意得△=(2t)2﹣1(t2﹣1)>0,即t2<1.弦長|AB|=4.故選:C.【點睛】本題主要考查了橢圓的應(yīng)用,直線與橢圓的關(guān)系.常需要把直線與橢圓方程聯(lián)立,利用韋達定理,判別式找到解決問題的突破口.9.A【解析】

根據(jù)換底公式可得,再化簡,比較的大小,即得答案.【詳解】,,.,顯然.,即,,即.綜上,.故選:.【點睛】本題考查換底公式和對數(shù)的運算,屬于中檔題.10.C【解析】

利用復(fù)數(shù)代數(shù)形式的乘法運算化簡得答案.【詳解】由,得,解得.故選:C.【點睛】本題考查復(fù)數(shù)代數(shù)形式的乘法運算,是基礎(chǔ)題.11.A【解析】

設(shè)成立;反之,滿足,但,故選A.12.B【解析】

構(gòu)造長方體ABCD﹣A1B1C1D1,令平面α為面ADD1A1,底面ABCD為β,然后再在這兩個面中根據(jù)題意恰當(dāng)?shù)倪x取直線為m,n即可進行判斷.【詳解】如圖,取長方體ABCD﹣A1B1C1D1,令平面α為面ADD1A1,底面ABCD為β,直線=直線。若令A(yù)D1=m,AB=n,則m⊥n,但m不垂直于若m⊥,由平面平面可知,直線m垂直于平面β,所以m垂直于平面β內(nèi)的任意一條直線∴m⊥n是m⊥的必要不充分條件.故選:B.【點睛】本題考點有兩個:①考查了充分必要條件的判斷,在確定好大前提的條件下,從m⊥n?m⊥?和m⊥?m⊥n?兩方面進行判斷;②是空間的垂直關(guān)系,一般利用長方體為載體進行分析.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

求出雙曲線的漸近線方程,求出準(zhǔn)線方程,求出三角形的頂點的坐標(biāo),然后求解面積.【詳解】解:雙曲線:雙曲線中,,,則雙曲線的一條準(zhǔn)線方程為,雙曲線的漸近線方程為:,可得準(zhǔn)線方程與雙曲線的兩條漸近線所圍成的三角形的頂點的坐標(biāo),,,,則三角形的面積為.故答案為:【點睛】本題考查雙曲線方程的應(yīng)用,雙曲線的簡單性質(zhì)的應(yīng)用,考查計算能力,屬于中檔題.14.【解析】

當(dāng)時,由,解得,當(dāng)時,,兩式相減可得,即,可得數(shù)列是等比數(shù)列再求通項公式.【詳解】當(dāng)時,,即,當(dāng)時,,兩式相減可得,即,即,故數(shù)列是以為首項,為公比的等比數(shù)列,所以.故答案為:【點睛】本題考查數(shù)列的前項和與通項公式的關(guān)系,還考查運算求解能力以及化歸與轉(zhuǎn)化思想,屬于基礎(chǔ)題.15.真命題【解析】

由冪函數(shù)的單調(diào)性進行判斷即可.【詳解】已知命題:,,因為在上單調(diào)遞增,則,所以是真命題,故答案為:真命題【點睛】本題主要考查了判斷全稱命題的真假,屬于基礎(chǔ)題.16.2025【解析】

利用賦值法,結(jié)合展開式中各項系數(shù)之和列方程,由此求得的值.再利用二項式展開式的通項公式,求得展開式中的系數(shù).【詳解】依題意,令,解得,所以,則二項式的展開式的通項為:令,得,所以的系數(shù)為.故答案為:2025【點睛】本小題主要考查二項式展開式各項系數(shù)之和,考查二項式展開式指定項系數(shù)的求法,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1);(2)或.【解析】

(1)分段討論得出函數(shù)的解析式,再分范圍解不等式,可得解集;(2)先求出函數(shù)的最小值,再建立關(guān)于的不等式,可求得實數(shù)的取值范圍.【詳解】(1)因為,所以當(dāng)時,;當(dāng)時,無解;當(dāng)時,;綜上,不等式的解集為;(2),又,或.【點睛】本題考查分段函數(shù),絕對值不等式的解法,以及關(guān)于函數(shù)的存在和任意的問題,屬于中檔題.18.(1),,,中位數(shù);(2)①三層中抽取的人數(shù)分別為2,5,13;②【解析】

(1)根據(jù)頻率分布直方表的性質(zhì),即可求得,得到,,再結(jié)合中位數(shù)的計算方法,即可求解.(2)①由題意知用分層抽樣的方法從樣本中抽取20人,根據(jù)抽樣比,求得在三層中抽取的人數(shù);②由①知,設(shè)內(nèi)被抽取的學(xué)生分別為,內(nèi)被抽取的學(xué)生分別為,利用列舉法得到基本事件的總數(shù),利用古典概型的概率計算公式,即可求解.【詳解】(1)由題意,可得,所以,.設(shè)一周課外讀書時間的中位數(shù)為小時,則,解得,即一周課外讀書時間的中位數(shù)約為小時.(2)①由題意知用分層抽樣的方法從樣本中抽取20人,抽樣比為,又因為,,的頻數(shù)分別為20,50,130,所以從,,三層中抽取的人數(shù)分別為2,5,13.②由①知,在,兩層中共抽取7人,設(shè)內(nèi)被抽取的學(xué)生分別為,內(nèi)被抽取的學(xué)生分別為,若從這7人中隨機抽取2人,則所有情況為,,,,,,,,,,,,,,,,,,,,,共有21種,其中2人不在同一層的情況為,,,,,,,,,,共有10種.設(shè)事件為“這2人不在同一層”,由古典概型的概率計算公式,可得概率為.【點睛】本題主要考查了頻率分布直方表的性質(zhì),中位數(shù)的求解,以及古典概型的概率計算等知識的綜合應(yīng)用,著重考查了分析問題和解答問題的能力,屬于基礎(chǔ)題.19.(1);(2).【解析】

(1)根據(jù)題意,建立首項和公差的方程組,通過基本量即可寫出前項和;(2)由(1)中所求,結(jié)合累加法求得.【詳解】(1)由題意可得即又因為,所以,所以.(2)由條件及(1)可得.由已知得,所以.又滿足上式,所以【點睛】本題考查等差數(shù)列通項公式和前項和的基本量的求解,涉及利用累加法求通項公式,屬綜合基礎(chǔ)題.20.(1).(2)答案見解析【解析】

(1)利用絕對值不等式的性質(zhì)即可求得最小值;(2)利用分析法,只需證明,兩邊平方后結(jié)合即可得證.【詳解】(1),當(dāng)且僅當(dāng)時取等號,∴的最小值;(2)證明:依題意,,要證,即證,即證,即證,即證,又可知,成立,故原不等式成立.【點睛】本題考查用絕對值三角不等式求最值,考查用分析法證明不等式,在不等式不易證明時,可通過執(zhí)果索因的方法尋找結(jié)論成立的充分條件,完成證明,這就是分析法.21.(1)(2)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論