版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年高一上數(shù)學(xué)期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知O是所在平面內(nèi)的一定點(diǎn),動點(diǎn)P滿足,則動點(diǎn)P的軌跡一定通過的()A.內(nèi)心 B.外心C.重心 D.垂心2.現(xiàn)對有如下觀測數(shù)據(jù)345671615131417記本次測試中,兩組數(shù)據(jù)的平均成績分別為,兩班學(xué)生成績的方差分別為,,則()A., B.,C., D.,3.下列函數(shù)既不是奇函數(shù),也不是偶函數(shù),且在上單調(diào)遞增是A. B.C. D.4.若全集,且,則()A.或 B.或C. D.或.5.已知函數(shù)的圖象上關(guān)于軸對稱的點(diǎn)至少有3對,則實數(shù)的取值范圍是A. B.C. D.6.在下列命題中,不是公理的是A.平行于同一條直線的兩條直線互相平行B.如果一條直線上的兩點(diǎn)在一個平面內(nèi),那么這條直線在此平面內(nèi)C.空間中,如果兩個角的兩邊分別對應(yīng)平行,那么這兩角相等或互補(bǔ)D.如果兩個不重合的平面有一個公共點(diǎn),那么它們有且只有一條過該點(diǎn)的公共直線7.已知,若方程有四個不同的實數(shù)根,,,,則的取值范圍是()A.(3,4) B.(2,4)C.[0,4) D.[3,4)8.()A. B.1C.0 D.﹣19.若命題:,則命題的否定為()A. B.C. D.10.在下列各圖中,每個圖的兩個變量具有線性相關(guān)關(guān)系的圖是A.(1)(2) B.(1)(3)C.(2)(4) D.(2)(3)二、填空題:本大題共6小題,每小題5分,共30分。11.已知則_______.12.如圖所示,正方體的棱長為,線段上有兩個動點(diǎn),且,則下列結(jié)論中正確的是_____①∥平面;②平面⊥平面;③三棱錐的體積為定值;④存在某個位置使得異面直線與成角°13.已知向量,若,則m=____.14.函數(shù)的最大值是,則實數(shù)的取值范圍是___________15.《九章算術(shù)》中將底面為長方形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽馬.已知陽馬,底面,,,,則此陽馬的外接球的表面積為______.16.函數(shù)的值域是________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖所示,在中,已知,,.(1)求的模;(2)若,,求的值.18.已知定義域為函數(shù)是奇函數(shù).(1)求的值;(2)判斷的單調(diào)性,并證明;(3)若,求實數(shù)的取值范圍.19.已知二次函數(shù)滿足(1)求的最小值;(2)若在上有兩個不同的零點(diǎn),求的取值范圍20.已知二次函數(shù)滿足且(1)求的解析式;(2)在區(qū)間上求的值域21.已知函數(shù)f(x)=2sin(ωx+φ)+1()的最小正周期為π,且(1)求ω和φ的值;(2)函數(shù)f(x)的圖象縱坐標(biāo)不變的情況下向右平移個單位,得到函數(shù)g(x)的圖象,①求函數(shù)g(x)的單調(diào)增區(qū)間;②求函數(shù)g(x)在的最大值
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】表示的是方向上的單位向量,畫圖象,根據(jù)圖象可知點(diǎn)在的角平分線上,故動點(diǎn)必過三角形的內(nèi)心.【詳解】如圖,設(shè),,已知均為單位向量,故四邊形為菱形,所以平分,由得,又與有公共點(diǎn),故三點(diǎn)共線,所以點(diǎn)在的角平分線上,故動點(diǎn)的軌跡經(jīng)過的內(nèi)心.故選:A.2、C【解析】利用平均數(shù)以及方差的計算公式即可求解.【詳解】,,,,故,故選:C【點(diǎn)睛】本題考查了平均數(shù)與方差,需熟記公式,屬于基礎(chǔ)題.3、C【解析】是偶函數(shù),是奇函數(shù),和既不是奇函數(shù)也不是偶函數(shù),在上是減函數(shù),是增函數(shù),故選C4、D【解析】根據(jù)集合補(bǔ)集的概念及運(yùn)算,準(zhǔn)確計算,即可求解.【詳解】由題意,全集,且,根據(jù)集合補(bǔ)集的概念及運(yùn)算,可得或.故選:D.5、D【解析】本題首先可以求出函數(shù)關(guān)于軸對稱的函數(shù)的解析式,然后根據(jù)題意得出函數(shù)與函數(shù)的圖像至少有3個交點(diǎn),最后根據(jù)圖像計算得出結(jié)果【詳解】若,則,因為時,,所以,所以若關(guān)于軸對稱,則有,即,設(shè),畫出函數(shù)的圖像,結(jié)合函數(shù)的單調(diào)性和函數(shù)圖像的凹凸性可知對數(shù)函數(shù)與三角函數(shù)在點(diǎn)處相交為臨界情況,即要使與的圖像至少有3個交點(diǎn),需要且滿足,即,解得,故選D【點(diǎn)睛】本題考查的是函數(shù)的對稱性、對數(shù)函數(shù)以及三角函數(shù)的相關(guān)性質(zhì),主要考查如何根據(jù)函數(shù)對稱性來求出函數(shù)解析式,考查學(xué)生對對數(shù)函數(shù)以及三角函數(shù)的圖像的理解,考查推理能力,考查數(shù)形結(jié)合思想,是難題6、C【解析】A,B,D分別為公理4,公理1,公理2,C為角平行性質(zhì),選C7、D【解析】利用數(shù)形結(jié)合可得,結(jié)合條件可得,,,且,再利用二次函數(shù)的性質(zhì)即得.【詳解】由方程有四個不同的實數(shù)根,得函數(shù)的圖象與直線有四個不同的交點(diǎn),分別作出函數(shù)的圖象與直線由函數(shù)的圖象可知,當(dāng)兩圖象有四個不同的交點(diǎn)時,設(shè)與交點(diǎn)的橫坐標(biāo)為,,設(shè),則,,由得,所以,即設(shè)與的交點(diǎn)的橫坐標(biāo)為,,設(shè),則,,且,所以,則故選:D.8、C【解析】直接利用誘導(dǎo)公式以及特殊角的三角函數(shù)求解即可.【詳解】.故選:C.9、D【解析】根據(jù)存在量詞的否定是全稱量詞可得結(jié)果.【詳解】根據(jù)存在量詞的否定是全稱量詞可得命題的否定為.故選:D10、D【解析】由線性相關(guān)的定義可知:(2)中兩變量線性正相關(guān),(3)中兩變量線性負(fù)相關(guān),故選:D考點(diǎn):變量線性相關(guān)問題二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】因為,所以12、①②③④【解析】在①中,由EF∥BD,得EF∥平面ABCD;在②中,連接BD,由AC⊥BD,AC⊥DD1,可知AC⊥面BDD1B1,從而得到面ACF⊥平面BEF;在③中,三棱錐E﹣ABF的體積與三棱錐A﹣BEF的體積相等,從而三棱錐E﹣ABF的體積為定值;在④中,令上底面中心為O,得到存在某個位置使得異面直線AE與BF成角30°【詳解】由正方體ABCD﹣A1B1C1D1的棱長為1,線段B1D1上有兩個動點(diǎn)E、F,且,知:在①中,由EF∥BD,且EF?平面ABCD,BD?平面ABCD,得EF∥平面ABCD,故①正確;在②中,連接BD,由AC⊥BD,AC⊥DD1,可知AC⊥面BDD1B1,而BE?面BDD1B1,BF?面BDD1B1,∴AC⊥平面BEF,∵AC?平面ACF,∴面ACF⊥平面BEF,故②正確;在③中,三棱錐E﹣ABF的體積與三棱錐A﹣BEF的體積相等,三棱錐A﹣BEF的底面積和高都是定值,故三棱錐E﹣ABF的體積為定值,故③正確;在④中,令上底面中心為O,當(dāng)E與D1重合時,此時點(diǎn)F與O重合,則兩異面直線所成的角是∠OBC1,可求解∠OBC1=300,故存在某個位置使得異面直線AE與BF成角30°,故④正確故答案為①②③④【點(diǎn)睛】本題考查命題真假的判斷,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,屬于中檔題13、-1【解析】求出的坐標(biāo),由向量共線時坐標(biāo)的關(guān)系可列出關(guān)于的方程,從而可求出的值.【詳解】解:∵,∴,∵,,∴,解得.故答案為:-114、[-1,0]【解析】函數(shù),當(dāng)時,函數(shù)有最大值,又因為,所以,故實數(shù)的取值范圍是15、【解析】將該幾何體放入長方體中,即可求得外接球的半徑,再由球的表面積公式即可得解.【詳解】將該幾何體放入長方體中,如圖,易知該長方體的長、寬、高分別為、、,所以該幾何體的外接球半徑,所以該球的表面積.故答案為:.16、##【解析】求出的范圍,再根據(jù)對數(shù)函數(shù)的性質(zhì)即可求該函數(shù)值域.【詳解】,而定義域上遞減,,無最小值,函數(shù)的值域為故答案為:.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)根據(jù)向量數(shù)量積定義可得,再根據(jù)向量加法幾何意義以及模性質(zhì)可得結(jié)果(2)先根據(jù)向量加減法則將化為,再根據(jù)向量數(shù)量積定義求值試題解析:(1)==;(2)因為,,所以.18、(1)(2)增函數(shù),證明見解析(3)或【解析】(1)由求出,再驗證此時為奇函數(shù)即可;(2)將的解析式分離常數(shù)后可判斷出單調(diào)性,再利用增函數(shù)的定義可證結(jié)論成立;(3)利用奇函數(shù)性質(zhì)化為,再利用增函數(shù)性質(zhì)可求出結(jié)果.【小問1詳解】因為是上的奇函數(shù),所以,即,此時,,所以為奇函數(shù),故.【小問2詳解】由(1)知,為上的增函數(shù),證明:任取,且,則,因為,所以,即,又,所以,即,根據(jù)增函數(shù)的定義可得為上的增函數(shù).【小問3詳解】由得,因為為奇函數(shù),所以,因為為增函數(shù),所以,即,所以或.19、(1)(2)【解析】(1)根據(jù)函數(shù)的對稱性可得出,再由均值不等式求解即可;(2)根據(jù)零點(diǎn)的分布列出不等式組求解即可.【小問1詳解】因為滿足,所以化簡得因為對任意恒成立,所以,即,當(dāng)且僅當(dāng)時,等號成立所以當(dāng)時,取得最小值為【小問2詳解】由(1)知.對稱軸方程為,因為在上有兩個不同的零點(diǎn),所以解得所以ab的取值范圍是20、(1);(2).【解析】(1)利用待定系數(shù)法可求得結(jié)果;(2)根據(jù)二次函數(shù)知識可求得結(jié)果.【詳解】(1)設(shè)二次函數(shù);又且;(2)在區(qū)間上,當(dāng)時,函數(shù)有最小值;當(dāng)時,函數(shù)有最大值;在區(qū)間上的值域是21、(1);(2)①增區(qū)間為;②最大值為3
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度智能城市建設(shè)項目承包合同4篇
- 2025年度智能水電安裝與維護(hù)一體化承包合同范文4篇
- 2024版廣告合同購銷
- 2025年度建筑節(jié)能環(huán)保材料研發(fā)與應(yīng)用合同2篇
- 2025年度企業(yè)內(nèi)部采購人員廉潔自律合作協(xié)議3篇
- 2025年度特種車輛充電樁定制與安裝合同4篇
- 2024鐵路客運(yùn)服務(wù)合同范本3篇
- 2025年度智慧城市建設(shè)項目承包合同規(guī)范3篇
- 2025年度智能農(nóng)業(yè)化肥代銷合作協(xié)議范本4篇
- 中國藍(lán)寶石襯底材料行業(yè)市場調(diào)查研究及發(fā)展戰(zhàn)略規(guī)劃報告
- 2023年上海英語高考卷及答案完整版
- 西北農(nóng)林科技大學(xué)高等數(shù)學(xué)期末考試試卷(含答案)
- 金紅葉紙業(yè)簡介-2 -紙品及產(chǎn)品知識
- 《連鎖經(jīng)營管理》課程教學(xué)大綱
- 《畢淑敏文集》電子書
- 頸椎JOA評分 表格
- 員工崗位能力評價標(biāo)準(zhǔn)
- 定量分析方法-課件
- 朱曦編著設(shè)計形態(tài)知識點(diǎn)
- 110kV變電站工程預(yù)算1
- 某系統(tǒng)安全安全保護(hù)設(shè)施設(shè)計實施方案
評論
0/150
提交評論