![2023學年內(nèi)蒙古一機一中高三下學期聯(lián)考數(shù)學試題(含答案解析)_第1頁](http://file4.renrendoc.com/view/6a17e38474736d003739b3e183785858/6a17e38474736d003739b3e1837858581.gif)
![2023學年內(nèi)蒙古一機一中高三下學期聯(lián)考數(shù)學試題(含答案解析)_第2頁](http://file4.renrendoc.com/view/6a17e38474736d003739b3e183785858/6a17e38474736d003739b3e1837858582.gif)
![2023學年內(nèi)蒙古一機一中高三下學期聯(lián)考數(shù)學試題(含答案解析)_第3頁](http://file4.renrendoc.com/view/6a17e38474736d003739b3e183785858/6a17e38474736d003739b3e1837858583.gif)
版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2023高考數(shù)學模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.為了得到函數(shù)的圖象,只需把函數(shù)的圖象上所有的點()A.向左平移個單位長度 B.向右平移個單位長度C.向左平移個單位長度 D.向右平移個單位長度2.已知是橢圓和雙曲線的公共焦點,是它們的-一個公共點,且,設橢圓和雙曲線的離心率分別為,則的關系為()A. B.C. D.3.如圖所示的程序框圖,若輸入,,則輸出的結(jié)果是()A. B. C. D.4.已知函數(shù).設,若對任意不相等的正數(shù),,恒有,則實數(shù)a的取值范圍是()A. B.C. D.5.我國古代數(shù)學著作《九章算術》中有如下問題:“今有器中米,不知其數(shù),前人取半,中人三分取一,后人四分取一,余米一斗五升(注:一斗為十升).問,米幾何?”下圖是解決該問題的程序框圖,執(zhí)行該程序框圖,若輸出的S=15(單位:升),則輸入的k的值為()?A.45 B.60 C.75 D.1006.執(zhí)行下面的程序框圖,則輸出的值為()A. B. C. D.7.已知集合,則的值域為()A. B. C. D.8.已知復數(shù)z=2i1-i,則A.第一象限 B.第二象限 C.第三象限 D.第四象限9.五名志愿者到三個不同的單位去進行幫扶,每個單位至少一人,則甲、乙兩人不在同一個單位的概率為()A. B. C. D.10.已知,則()A.5 B. C.13 D.11.已知定義在R上的偶函數(shù)滿足,當時,,函數(shù)(),則函數(shù)與函數(shù)的圖象的所有交點的橫坐標之和為()A.2 B.4 C.5 D.612.已知函數(shù)(),若函數(shù)有三個零點,則的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某學校高一、高二、高三年級的學生人數(shù)之比為,現(xiàn)按年級采用分層抽樣的方法抽取若干人,若抽取的高三年級為12人,則抽取的樣本容量為________人.14.已知數(shù)列滿足對任意,若,則數(shù)列的通項公式________.15.已知橢圓C:1(a>b>0)的左、右焦點分別為F1,F(xiàn)2,橢圓的焦距為2c,過C外一點P(c,2c)作線段PF1,PF2分別交橢圓C于點A、B,若|PA|=|AF1|,則_____.16.在平面直角坐標系中,點的坐標為,點是直線:上位于第一象限內(nèi)的一點.已知以為直徑的圓被直線所截得的弦長為,則點的坐標__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),函數(shù)在點處的切線斜率為0.(1)試用含有的式子表示,并討論的單調(diào)性;(2)對于函數(shù)圖象上的不同兩點,,如果在函數(shù)圖象上存在點,使得在點處的切線,則稱存在“跟隨切線”.特別地,當時,又稱存在“中值跟隨切線”.試問:函數(shù)上是否存在兩點使得它存在“中值跟隨切線”,若存在,求出的坐標,若不存在,說明理由.18.(12分)已知橢圓的焦距為2,且過點.(1)求橢圓的方程;(2)設為的左焦點,點為直線上任意一點,過點作的垂線交于兩點,(ⅰ)證明:平分線段(其中為坐標原點);(ⅱ)當取最小值時,求點的坐標.19.(12分)在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)).在以坐標原點為極點,軸的正半軸為極軸的極坐標系中,直線的極坐標方程為.(1)求曲線的普通方程及直線的直角坐標方程;(2)求曲線上的點到直線的距離的最大值與最小值.20.(12分)如圖,在正四棱柱中,,,過頂點,的平面與棱,分別交于,兩點(不在棱的端點處).(1)求證:四邊形是平行四邊形;(2)求證:與不垂直;(3)若平面與棱所在直線交于點,當四邊形為菱形時,求長.21.(12分)本小題滿分14分)已知曲線的極坐標方程為,以極點為原點,極軸為軸的非負半軸建立平面直角坐標系,直線的參數(shù)方程為(為參數(shù)),求直線被曲線截得的線段的長度22.(10分)在中,a,b,c分別是角A,B,C的對邊,并且.(1)已知_______________,計算的面積;請①,②,③這三個條件中任選兩個,將問題(1)補充完整,并作答.注意,只需選擇其中的一種情況作答即可,如果選擇多種情況作答,以第一種情況的解答計分.(2)求的最大值.
2023學年模擬測試卷參考答案(含詳細解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【答案解析】
通過變形,通過“左加右減”即可得到答案.【題目詳解】根據(jù)題意,故只需把函數(shù)的圖象上所有的點向右平移個單位長度可得到函數(shù)的圖象,故答案為D.【答案點睛】本題主要考查三角函數(shù)的平移變換,難度不大.2.A【答案解析】
設橢圓的半長軸長為,雙曲線的半長軸長為,根據(jù)橢圓和雙曲線的定義得:,解得,然后在中,由余弦定理得:,化簡求解.【題目詳解】設橢圓的長半軸長為,雙曲線的長半軸長為,由橢圓和雙曲線的定義得:,解得,設,在中,由余弦定理得:,化簡得,即.故選:A【答案點睛】本題主要考查橢圓,雙曲線的定義和性質(zhì)以及余弦定理的應用,還考查了運算求解的能力,屬于中檔題.3.B【答案解析】
列舉出循環(huán)的每一步,可得出輸出結(jié)果.【題目詳解】,,不成立,,;不成立,,;不成立,,;成立,輸出的值為.故選:B.【答案點睛】本題考查利用程序框圖計算輸出結(jié)果,一般要將算法的每一步列舉出來,考查計算能力,屬于基礎題.4.D【答案解析】
求解的導函數(shù),研究其單調(diào)性,對任意不相等的正數(shù),構造新函數(shù),討論其單調(diào)性即可求解.【題目詳解】的定義域為,,當時,,故在單調(diào)遞減;不妨設,而,知在單調(diào)遞減,從而對任意、,恒有,即,,,令,則,原不等式等價于在單調(diào)遞減,即,從而,因為,所以實數(shù)a的取值范圍是故選:D.【答案點睛】此題考查含參函數(shù)研究單調(diào)性問題,根據(jù)參數(shù)范圍化簡后構造新函數(shù)轉(zhuǎn)換為含參恒成立問題,屬于一般性題目.5.B【答案解析】
根據(jù)程序框圖中程序的功能,可以列方程計算.【題目詳解】由題意,.故選:B.【答案點睛】本題考查程序框圖,讀懂程序的功能是解題關鍵.6.D【答案解析】
根據(jù)框圖,模擬程序運行,即可求出答案.【題目詳解】運行程序,,
,,,,,結(jié)束循環(huán),故輸出,故選:D.【答案點睛】本題主要考查了程序框圖,循環(huán)結(jié)構,條件分支結(jié)構,屬于中檔題.7.A【答案解析】
先求出集合,化簡=,令,得由二次函數(shù)的性質(zhì)即可得值域.【題目詳解】由,得,,令,,,所以得,在上遞增,在上遞減,,所以,即的值域為故選A【答案點睛】本題考查了二次不等式的解法、二次函數(shù)最值的求法,換元法要注意新變量的范圍,屬于中檔題8.C【答案解析】分析:根據(jù)復數(shù)的運算,求得復數(shù)z,再利用復數(shù)的表示,即可得到復數(shù)對應的點,得到答案.詳解:由題意,復數(shù)z=2i1-i所以復數(shù)z在復平面內(nèi)對應的點的坐標為(-1,-1),位于復平面內(nèi)的第三象限,故選C.點睛:本題主要考查了復數(shù)的四則運算及復數(shù)的表示,其中根據(jù)復數(shù)的四則運算求解復數(shù)z是解答的關鍵,著重考查了推理與運算能力.9.D【答案解析】
三個單位的人數(shù)可能為2,2,1或3,1,1,求出甲、乙兩人在同一個單位的概率,利用互為對立事件的概率和為1即可解決.【題目詳解】由題意,三個單位的人數(shù)可能為2,2,1或3,1,1;基本事件總數(shù)有種,若為第一種情況,且甲、乙兩人在同一個單位,共有種情況;若為第二種情況,且甲、乙兩人在同一個單位,共有種,故甲、乙兩人在同一個單位的概率為,故甲、乙兩人不在同一個單位的概率為.故選:D.【答案點睛】本題考查古典概型的概率公式的計算,涉及到排列與組合的應用,在正面情況較多時,可以先求其對立事件,即甲、乙兩人在同一個單位的概率,本題有一定難度.10.C【答案解析】
先化簡復數(shù),再求,最后求即可.【題目詳解】解:,,故選:C【答案點睛】考查復數(shù)的運算,是基礎題.11.B【答案解析】
由函數(shù)的性質(zhì)可得:的圖像關于直線對稱且關于軸對稱,函數(shù)()的圖像也關于對稱,由函數(shù)圖像的作法可知兩個圖像有四個交點,且兩兩關于直線對稱,則與的圖像所有交點的橫坐標之和為4得解.【題目詳解】由偶函數(shù)滿足,可得的圖像關于直線對稱且關于軸對稱,函數(shù)()的圖像也關于對稱,函數(shù)的圖像與函數(shù)()的圖像的位置關系如圖所示,可知兩個圖像有四個交點,且兩兩關于直線對稱,則與的圖像所有交點的橫坐標之和為4.故選:B【答案點睛】本題主要考查了函數(shù)的性質(zhì),考查了數(shù)形結(jié)合的思想,掌握函數(shù)的性質(zhì)是解題的關鍵,屬于中檔題.12.A【答案解析】
分段求解函數(shù)零點,數(shù)形結(jié)合,分類討論即可求得結(jié)果.【題目詳解】作出和,的圖像如下所示:函數(shù)有三個零點,等價于與有三個交點,又因為,且由圖可知,當時與有兩個交點,故只需當時,與有一個交點即可.若當時,時,顯然??=??(??)與??=4|??|有一個交點??,故滿足題意;時,顯然??=??(??)與??=4|??|沒有交點,故不滿足題意;時,顯然??=??(??)與??=4|??|也沒有交點,故不滿足題意;時,顯然與有一個交點,故滿足題意.綜上所述,要滿足題意,只需.故選:A.【答案點睛】本題考查由函數(shù)零點的個數(shù)求參數(shù)范圍,屬中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【答案解析】
根據(jù)分層抽樣的定義建立比例關系即可得到結(jié)論.【題目詳解】設抽取的樣本為,則由題意得,解得.故答案為:【答案點睛】本題考查了分層抽樣的知識,算出抽樣比是解題的關鍵,屬于基礎題.14.【答案解析】
由可得,利用等比數(shù)列的通項公式可得,再利用累加法求和與等比數(shù)列的求和公式,即可得出結(jié)論.【題目詳解】由,得,數(shù)列是等比數(shù)列,首項為2,公比為2,,,,,滿足上式,.故答案為:.【答案點睛】本題考查數(shù)列的通項公式,遞推公式轉(zhuǎn)化為等比數(shù)列是解題的關鍵,利用累加法求通項公式,屬于中檔題.15.【答案解析】
根據(jù)條件可得判斷OA∥PF2,且|PF2|=2|OA|,從而得到點A為橢圓上頂點,則有b=c,解出B的坐標即可得到比值.【題目詳解】因為|PA|=|AF1|,所以點A是線段PF1的中點,又因為點O為線段F1F2的中點,所以OA∥PF2,且|PF2|=2|OA|,因為點P(c,2c),所以PF2⊥x軸,則|PF2|=2c,所以OA⊥x軸,則點A為橢圓上頂點,所以|OA|=b,則2b=2c,所以b=c,ac,設B(c,m)(m>0),則,解得mc,所以|BF2|c,則.故答案為:2.【答案點睛】本題考查橢圓的基本性質(zhì),考查直線位置關系的判斷,方程思想,屬于中檔題.16.【答案解析】
依題意畫圖,設,根據(jù)圓的直徑所對的圓周角為直角,可得,通過勾股定理得,再利用兩點間的距離公式即可求出,進而得出點坐標.【題目詳解】解:依題意畫圖,設以為直徑的圓被直線所截得的弦長為,且,又因為為圓的直徑,則所對的圓周角,則,則為點到直線:的距離.所以,則.又因為點在直線:上,設,則.解得,則.故答案為:【答案點睛】本題考查了直線與圓的位置關系,考查了兩點間的距離公式,點到直線的距離公式,是基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1),單調(diào)性見解析;(2)不存在,理由見解析【答案解析】
(1)由題意得,即可得;求出函數(shù)的導數(shù),再根據(jù)、、、分類討論,分別求出、的解集即可得解;(2)假設滿足條件的、存在,不妨設,且,由題意得可得,令(),構造函數(shù)(),求導后證明即可得解.【題目詳解】(1)由題可得函數(shù)的定義域為且,由,整理得..(?。┊敃r,易知,,時.故在上單調(diào)遞增,在上單調(diào)遞減.(ⅱ)當時,令,解得或,則①當,即時,在上恒成立,則在上遞增.②當,即時,當時,;當時,.所以在上單調(diào)遞增,單調(diào)遞減,單調(diào)遞增.③當,即時,當時,;當時,.所以在上單調(diào)遞增,單調(diào)遞減,單調(diào)遞增.綜上,當時,在上單調(diào)遞增,在單調(diào)遞減.當時,在及上單調(diào)遞增;在上單調(diào)遞減.當時,在上遞增.當時,在及上單調(diào)遞增;在上遞減.(2)滿足條件的、不存在,理由如下:假設滿足條件的、存在,不妨設,且,則,又,由題可知,整理可得:,令(),構造函數(shù)().則,所以在上單調(diào)遞增,從而,所以方程無解,即無解.綜上,滿足條件的A、B不存在.【答案點睛】本題考查了導數(shù)的應用,考查了計算能力和轉(zhuǎn)化化歸思想,屬于中檔題.18.(1)(2)(ⅰ)見解析(ⅱ)點的坐標為.【答案解析】
(1)由題意得,再由的關系求出,即可得橢圓的標準方程;(2)(i)設,的中點為,,設直線的方程為,代入橢圓方程中,運用根與系數(shù)的關系和中點坐標公式,結(jié)合三點共線的方法:斜率相等,即可得證;(ii)利用兩點間的距離公式及弦長公式將表示出來,由換元法的對勾函數(shù)的單調(diào)性,可得取最小值時的條件獲得等量關系,從而確定點的坐標.【題目詳解】解:(1)由題意得,,所以,所以橢圓方程為(2)設,的中點為,(?。┳C明:由,可設直線的方程為,代入橢圓方程,得,所以,所以,則直線的斜率為,因為,所以,所以三點共線,所以平分線段;(ii)由兩點間的距離公式得由弦長公式得所以,令,則,由在上遞增,可得,即時,取得最小值4,所以當取最小值時,點的坐標為【答案點睛】此題考那可是橢圓方程和性質(zhì),主要考查橢圓方程的運用,運用根與系數(shù)的關系和中點坐標公式,同時考查弦長公式,屬于較難題.19.(1),(2)最大值,最小值【答案解析】
(1)由曲線的參數(shù)方程,得兩式平方相加求解,根據(jù)直線的極坐標方程,展開有,再根據(jù)求解.(2)因為曲線C是一個半圓,利用數(shù)形結(jié)合,圓心到直線的距離減半徑即為最小值,最大值點由圖可知.【題目詳解】(1)因為曲線的參數(shù)方程為所以兩式平方相加得:因為直線的極坐標方程為.所以所以即(2)如圖所示:圓心C到直線的距離為:所以圓上的點到直線的最小值為:則點M(2,0)到直線的距離為最大值:【答案點睛】本題主要考查參數(shù)方程,普通方程及極坐標方程的轉(zhuǎn)化和直線與圓的位置關系,還考查了數(shù)形結(jié)合的思想和運算求解的能力,屬于中檔題.20.(1)證明見解析;(2)證明見解析;(3).【答案解析】
(1)由平面與平面沒有交點,可得與不相交,又與共面,所以,同理可證,得證;(2)由四邊形是平行四邊形,且
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025至2031年中國小雞配合飼料行業(yè)投資前景及策略咨詢研究報告
- 2025至2031年中國PVC燙線行業(yè)投資前景及策略咨詢研究報告
- 2025至2030年中國高強無收縮灌注料數(shù)據(jù)監(jiān)測研究報告
- 2025至2030年中國葡萄糖衍生物數(shù)據(jù)監(jiān)測研究報告
- 2025至2030年中國顯微鏡數(shù)碼攝像儀數(shù)據(jù)監(jiān)測研究報告
- 2025年中國植物生長素鋅肥市場調(diào)查研究報告
- 15《金色的魚鉤》教學設計-2024-2025學年語文六年級上冊統(tǒng)編版
- 第13課 點陣-高中信息技術Arduino開源硬件系列課程教學設計
- 2024-2025學年新教材高中生物第4章基因的表達第2節(jié)基因表達與性狀的關系練習新人教版必修第二冊
- 2024-2025學年高中英語Unit3TheMillionPoundBankNoteSectionⅢ-Grammar課后篇鞏固提升新人教版必修3
- 信永中和在線測評85題
- 2024年第二批政府專職消防員招錄報名表
- DB41-T 2704-2024 森林撫育技術規(guī)程
- 2020-2021學年浙江省金華市東陽市七年級(下)期末數(shù)學試卷(附答案詳解)
- 樂理知識考試題庫130題(含答案)
- 2024年單招考試題
- 三年級數(shù)學下冊期末測試卷及答案【可打印】
- 蘇教版小學語文上冊教學研究論文
- 片狀鋅粉行業(yè)分析!中國片狀鋅粉行業(yè)市場發(fā)展前景研究報告(2024版)
- 2024至2030年中國中水回用行業(yè)發(fā)展監(jiān)測及投資戰(zhàn)略規(guī)劃報告
- NB/T 11430-2023煤礦TBM掘進施工工藝要求
評論
0/150
提交評論