




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
SynchronousMachines-ReactanceandExcitationCalculationMarkFanslowTecoWestinghouseEngineeringTrainingNov.2005SynchronousMachines-Reactan1StatorRevolvingMagneticFieldMagneticPolePairsrotateatSynchronousSpeedThreePhaseACVoltageStatorRevolvingMagneticFiel2SynchronousRotorDCinputtotherotorcreateselectromagneticpolespairsPolesofdifferentpolarityarecreatedbywindingaroundthepoleindifferentdirectionsSynchronousRotorDCinputtot3SynchronousMotorRotor“Locked”intopowersupply,rovlovesatsynchronousspeedSynchronousMotorRotor“Locked4PhasorsandPhasorDiagramsTheconceptofPhasorsisrelatedtosinusoidalwaveformsthataredistributedinspaceandvarywithtime.Phasorsarecomplex(asincomplexnumbers)quantitiesusedforsimplifiedcalculationoftimevaryingandtravelingwaveforms.Themagnitudeandphaserelationshipbetweenthevectorsandcanbeshownsimplyinphasordiagrams.PhasorsandPhasorDiagramsThe5PhasorDiagramExampleConsiderthesimpleRL(resistiveinductive)circuitV=Vmsin(ωt)Voltagefunctionoftime.CurrentfunctionoftimeanddisplacedbyangleVILMagneticFluxinInductor90°outofphasewithvoltagewaveformi90°PhasorDiagramExampleConsider6PhasorDiagramCont.VIFLФLRecall:
B:MagneticFluxDensitydenoteФ
H:MagneticFluxIntensityormmfdenoteFo:Constantofpermeabilityoffreespacer:Constantofpermeabilityofelectricalsteel
PhasorDiagramCont.VIFLФLRec7CylindricalRotorSynchronousMachine:Duetotheevenairgap,theformulationsforbasicmachinequantitiesissimplified.Wewillconsiderthecylindricalmachinetheoryfirstandthenextendtheanalysistothesalientpolecase.CylindricalRotorSynchronous8AxisofFieldAxisofPhaseA90°lagArmaturecurrentmmfFarResultantmmfFrFieldmmfFfRotorRotationStatorRotorNSStatorI.D.RotorO.D.AxisofFieldAxisofPhaseA909IaVtIaraEintEaΦar-ΦarfΦfRjIaxAjIax1Φr-ararErIaVtIaraEintEaΦar-ΦarfΦfRjI10CylindricalRotorPhasorDiagramForSynchronousGeneratorVt: TerminalVoltageIa: StatorCurrentLagsterminalVoltagebyAngleEa: AirGapVoltage,thevoltageinducedintothearmaturebythe fieldvoltageactingalone,the“opencircuit”voltageEr: ReactivevoltageproducedbyarmaturefluxEint: ResultantVoltageintheAirGapar: FluxfromArmaturecurrent(ArmatureReaction)f: Fluxduetofieldcurrentr: Resultantfluxar+fFf: mmfofFieldAar: mmfofArmatureCurrent(ArmatureReaction)FR: Resultantmmf,thesumofF+AIara: Voltagedropofarmatureresistance Iaxl: ReactivevoltagedropofArmatureleakagereactanceIaxA: ReactivevoltagedropofreactanceofArmaturereactionCylindricalRotorPhasorDiagr11FromthediagramitisevidentthatEr,thevoltageinducedinthestatorbytheeffectofthearmaturereactionflux,isinphasewithIaXl.ThesummationofErandIaXlgivesthetotalreactivevoltageproducedinthearmaturecircuitbythearmatureflux.TheratioofthistotalvoltagetoarmaturecurrentisdefinedasXsorthesynchronousreactance.Fromthediagramitisevident12SalientPoleSynchronousMachinesSalientPoleSynchronousMachi13SalientPoleSynchronousMachineSalientPoleSynchronousMachi14TwoReactionTheoryOneoftheconceptsusedincylindricalrotortheorywasthesummationofbothfluxandmmfwaveforms.r=f+arandFr=Ff+FarThisisallowedsince
B=orHandthemagneticpermeabilityoftheairgapisconstantaroundtherotorHoweverforsalientpolemachines,thepermeabilityofthefluxpathvariessignificantlyastheratioofairgaptosteelchanges.Thereforerf+ar
TwoReactionTheoryOneofthe15SalientPoleSynchronousMachineWithasalientpolemachine,asinusoidaldistributionoffluxcannotbeassumedintheairgapduetothevariationinmagneticpermeancealongtheairgap.However,owingtothesymmetryofasalientpolemachinealongthedirectandquadratureaxis,asinusoidaldistributionofmmfcanbeassumedalongeachaxis.BreakthemmfofthearmaturecurrentAarintotwocomponents,AdandAq.AdisthecomponentofAarthatworksalongthedirectaxisandAqisthecomponentofAarcenteredonthequadratureaxis.SalientPoleSynchronousMachi16TwoReactionTheory:IntroductionIfyouacceptthatAarcanbebrokenintotwocomponentsAdandAq,itfollowsthatforeachmmfwaveform,aemfwaveformexists90degreesoutofphasewithit.SoAdhasanassociatedEd,andAqhasanassociatedEq.ThesevoltagedropscanbethoughofhasbeingcreatedbyafictitiousreactancedropEd=XadIdandEq=XaqIq
,whereId: DirectaxiscomponentofarmaturecurrentIq:QuadratureaxiscomponentofarmaturecurrentXad:DirectaxisarmaturereactionreactanceXaq:QuadratureaxisarmaturereactionreactanceTwoReactionTheory:Introduct17IaVtIaraEintEaΦarθjIaxAAjIax1IdxldIqxlqIdxAdIqxAqForCylindricalRotor:Ia2=Id2+Iq2Xld=XlqXAd=XAqIaVtIaraEintEaΦarθjIaxAAjIax1I18TwoReactionDiagramSinceforaCylindricalRotor:Ia2=Id2+Iq2and(IaXs)2=(IdXd)2+(IqXq)2Xld=XlqXAd=XAqXs=Xd=XqItisnotnecessarytousetworeactiontheorytodescribethequantitiesofacylindricalrotormachine.TwoReactionDiagramSincefor19EaIqIaIdΦfΦrΦaqΦadΦarPhasorDiagramofaSalientPoleSynchronousGeneratorEaIqIaIdΦfΦrΦaqΦadΦarPhasorDi20IaVtIdEintIqK1EintIdxadIqxaqEaIaraIaxlIa:StatorcurrentVt:StatorterminalVoltageIra:VoltageofstatorresistanceIxl:VoltageofstatorleakagereactanceEint:InternalairgapvoltageK1Eint:Extrammfrequiredtoovercomestatorsaturation,K1issaturationfactorIdxad:reactivevoltagedropdirectaxisIdxaq:ReactivevoltagedropquadratureaxisEa:Totalsumofdirectaxisvoltage,airgap voltage,opencircuitvoltage?εδId=Iasin(+δ)Iq=Iasin(+δ)IaVtIdEintIqK1EintIdxadIqxaqE21PoleFaceDesign-MagneticFieldsThemmfwaveofarmaturereactionandthemmfwaveofthepolearecreatedontwodifferentsidesoftheairgapbutmustbecombinedtodeterminearesultantmmf.Todothiswemustdetermineconversionfactorstoconvertanstatorsidemmftoandequivalentrotorsidemmf.90°lagArmaturecurrentmmfFarResultantmmfFrFieldmmfFfRotorRotationStatorRotorNSPoleFaceDesign-MagneticFi22PoleFaceDesign–MagneticFieldsC1:Ifpeakofthefundamentalisunity,thenC1ispeakofacutalwaveform.NotethatWiesemancallsthisA1No-Load:motorisexcitedbythefieldwindingonlyPoleFaceDesign–MagneticFi23PoleFaceDesign–MagneticFieldCd1:Ifpeakofthefundamentalisunity,thenCd1ispeakofacutalwaveform.NotethatWiesemancallsthisAd1ArmaturemmfSinewavewhoseaxiscoincideswiththepolecenterPoleFaceDesign–MagneticFi24PoleFaceDesign–MagneticFieldCq1:Ifpeakofthefundamentalisunity,thenCq1ispeakofacutalwaveform.NotethatWiesemancallsthisAq1ArmaturemmfSinewavewhoseaxiscoincideswiththegapbetweenpolesPoleFaceDesign–MagneticFi25ListofPoleConstantsCd1–RatioofthefundamentaloftheairgapfluxproducedbythedirectaxisarmaturecurrenttothatwhichwouldbeproducedwithauniformgapequaltotheeffectivegapatthepolecenterCq1–RatioofthefundamentaloftheairgapfluxproducedbythequadratureaxisarmaturecurrenttothatwhichwouldbeproducedwithauniformgapequaltotheeffectivegapatthepolecenterC1–Theratioofthefundamentaltotheactualmaximumvalueofthefieldformwhenexcitedbythefieldonly(no-load)Cm–Ratiooffundamentalairgapfluxproducedbythefundamentalofarmaturemmftothatproducedbythefieldforthesamemaximummmf.Thisisthearmaturereactionconversionfactorforthedirectaxis.Cm=Cd1/C1K–Fluxdistributioncoefficient;theratiooftheareaoftheactualnoloadfluxwavetotheareaofitsfundamentalListofPoleConstantsCd1–R26PoleConstantsWhatfollowsaregraphsthatrelatethephysicalgeometryofthepoletothepoleconstants.ThesegraphscanbefoundintheappendixofEngineeringNote106.Thegraphsintheengineeringnoteareidenticaltographsthatfirstappearedina1927AIEEpapertitledGraphicalDeterminationofMagneticFieldsbyRobertWieseman.PoleConstantsWhatfollowsare27PoleConstantsWiesemanusedhandplottingtechniquestoplotthefluxfieldsofseveralhundredsofpoleshapestocomeupwiththegraphs.Duetotheintensivenatureofthework,thegraphsareplottedforalimitedrangeofpolegeometry:Polearc/Polepitch=0.5to.75 Gmax/Gmin=1.0to3.0 Minimumgap/polepitch=.005to.05 SincethesecurvesareusedbySMDStocalculatemotorperformance,SMDSwillnotrunwithanyoneofthesethreevariablesoutsideofthegivenrange.Thereisnoreason,besidesthelimitationsoftheoriginalcurves,whyvariablesoutsidetherangeslistedabovecouldn’tbeused.PoleConstantsWiesemanusedha28PoleFaceDesign–MagneticFieldsDeterminationofKPoleFaceDesign–MagneticFi29PoleFaceDesign–MagneticFieldsDeterminationofC1PoleFaceDesign–MagneticFi30PoleFaceDesign–MagneticFieldsDeterminationofCq1PoleFaceDesign–MagneticFi31PoleFaceDesign–MagneticFieldsDeterminationofCd1PoleFaceDesign–MagneticFi32PoleFaceDesign–MagneticFieldsPolefacedesignscomeintwoflavors,singleradiusanddoubleradius.Thereasonforthisistheshapeofthepoleheadrelativetothestatorboreradiushasalargeinfluenceoftheshapeofthefieldfluxwaveform.PoleFaceDesign–MagneticFi33ReactanceCalculationsXad=ReactanceofarmaturereactiondirectedalongthedirectaxisXaq=ReactanceofarmaturereactiondirectedalongthequadratureaxisT=CommonReactanceFactora=PermeanceFactorCd1=PoleConstantCq1=PoleConstantReactanceCalculationsXad=Re34T=CommonReactanceFactorm=#phasesL=StatorCoreLengthf=frequencyZ=SeriesConductorsperPhaseKw=WindingfactorStatorP=#PolesReactanceCalculationsT=CommonReactanceFactorRea35a=PermeanceFactorD=DiameterofStatorBoreP=#PolesKg=Carter’sGapCoefficeintgmin=MinimumairgapatcenterofpoleReactanceCalculationsa=PermeanceFactorReactance36ArmatureLeakageReactanceisdeterminedusingamethodologyidenticaltotheinductionmachine.SynchronousReactancesXd=Xl+XadXq=Xl+XaqArmatureLeakageReactanceis37ExcitationCalculations1.CalculatetotalMagneticFlux2.ConvertarmaturemagneticFluxtoFieldEquivalent3.CalculateEintbyaddingarmatureresistanceandleakagereactancedropstoterminalvoltage.4.Usingstep2,calculatetheamphereturnsrequiredtomagnitizetheairgap.5.UsingstepEintfromstep3andelectricalsteelmagnitizationcurvescalculatetheampereturnsrequiredtomagnitzethestatorcoreandairgap.6.Usingtheresultsof4and5calculatethesaturationfactor.7.Usingtheresultsof3and5calculatethedirectaxiscomponentofmmf.8.Calculatethedirectaxiscomponentofarmaturereaction9.Usingtheresultsof6and7calculatethemmfrequirementsatthepoleface10.Calculatethepolesaturationmmf11.Totaldirectaxisexcitationisthesumof8and9ExcitationCalculations1.Cal38ExcitationCalculationsStepOne:TotalfundamentalfluxperpoleEph: PhasevoltageatstatorterminalsKp: PitchFactorKd: DistributionFactorFreq: FrequencyNSPC: ArmatureseriesturnsperphasepercircuitExcitationCalculationsStepOn39ExcitationCalculation Step2:CalculatetotalfluxperpoleonopencircuitKrelatesfundamentalfluxperpoletototalfluxperpoleusingfactors.ExcitationCalculation Step240ExcitationCalculationCont.Step3:Calculatetotalairgapfluxperpoleatthespecificvoltageandloadofinterest.ThisvoltagewasshownonthepreviousphasordiagramasEint.Step3a:CalculatethestatorleakagereactanceusingsameformulasderivedfortheInductionmotorstator.ExcitationCalculationCont.St41FieldExcitationCont.PortionofthepreviousphasordiagramisredrawnFromdiagramitisevidentthat:IaxlIaraIaVtIdEintIqFieldExcitationCont.Portion42IaVtEintIqK1EintIdxadIqxaqIaxaqIaraIaxlαεδIdK1Eintsin(α)IaVtEintIqK1EintIdxadIqxaqIax43FieldExcitationCont.Step4:Calculatetheampereturnsneededtomagnetizetheairgapatratedvoltage:Fg.Samegapfactorusedfrominductionmotortheory(i.e.Carter’scoefficient)FieldExcitationCont.Step4:44FieldExcitationCont.Step5:Calculatethestatorcore+statorteethampereturnsatthevalueoffluxcorrespondingtoEint.Ac:AreaofstatorcoreAt:AreaofstatorteethBCmax:maximumvalueoffluxdensityinstatorcoreBTmax:maximumvalueoffluxdensityinstatorteethFieldExcitationCont.Step5:45FieldExcitationCont.UsingB-Hcurvesformagneticsteelusedforstatorlaminations,readoffavalueofmmfinamphereturnsforthevalueofBCmaxandBTmaxcalculatedinprevioussteps.Makesureunitsmatch.FieldExcitationCont.UsingB-46FieldExcitationCont. Step6:CalculatethecomponentmmfinthedirectaxiscorrespondingtoK1eintStep6a:CalculatesaturationfactorK1fromB-Hcurveforelectricalsteel.Statormmf:ActualvalueofampereturnscorrespondingtoEintvalueoffluxfromstep5.FgEint:ValueofmmfthatwouldresultbyextendingthestraitportionofB-Hcurve.Fgwascalculatedinstep4.FieldExcitationCont. Step6:47mmfeintmmfeint48FieldExcitationCont.Step7:K1eld=K1Eintcos?K1eld:Componentofmmfinthedirectaxis correspondingtoK1EintK1:SaturationFactorfromstep6Eint:Voltage
intheairgapfromstep4?:AnglebetweenFieldExcitationVoltageand Eint.:
?=
-FieldExcitationCont.Step7:49FieldExcitationCont.Step8:Calculatethedirectaxiscomponentofarmaturereaction:IdxadXadcalculatedinreactancesectionId=Iasin(ε)FieldExcitationCont.Step8:50FieldExcitationCont.Step9:Addingtheresultsfromstep7andstep6,yougetthemmfrequirementsatthepolefaceFPF.FPF=K1Eintcos(?)+IdxadTheunitsofFPFareampereturns.FieldExcitationCont.Step9:51FieldExcitationCont.Step10:Calculatethepolesaturationmmf.Usingtheresultsofthenextlecture,calculatethepoleleakagefactorKLTherotorfluxperpoleisthenKLxEintxFReadthevalueofmmfperpolefromthepolesteelB-HCurve.FieldExcitationCont.Step10:52FieldExcitationFinishThetotalexcitationrequiredalongthedirectaxisisthesumofsteps9and10.Theresultisinunitsofampere-turns.Dividetheampere-turnsbythenumberofturnsperpoletoarriveatFullLoadFieldAmps.FieldExcitationFinishThetot53THEEND Questions?THEEND Questions?54SynchronousMachines-ReactanceandExcitationCalculationMarkFanslowTecoWestinghouseEngineeringTrainingNov.2005SynchronousMachines-Reactan55StatorRevolvingMagneticFieldMagneticPolePairsrotateatSynchronousSpeedThreePhaseACVoltageStatorRevolvingMagneticFiel56SynchronousRotorDCinputtotherotorcreateselectromagneticpolespairsPolesofdifferentpolarityarecreatedbywindingaroundthepoleindifferentdirectionsSynchronousRotorDCinputtot57SynchronousMotorRotor“Locked”intopowersupply,rovlovesatsynchronousspeedSynchronousMotorRotor“Locked58PhasorsandPhasorDiagramsTheconceptofPhasorsisrelatedtosinusoidalwaveformsthataredistributedinspaceandvarywithtime.Phasorsarecomplex(asincomplexnumbers)quantitiesusedforsimplifiedcalculationoftimevaryingandtravelingwaveforms.Themagnitudeandphaserelationshipbetweenthevectorsandcanbeshownsimplyinphasordiagrams.PhasorsandPhasorDiagramsThe59PhasorDiagramExampleConsiderthesimpleRL(resistiveinductive)circuitV=Vmsin(ωt)Voltagefunctionoftime.CurrentfunctionoftimeanddisplacedbyangleVILMagneticFluxinInductor90°outofphasewithvoltagewaveformi90°PhasorDiagramExampleConsider60PhasorDiagramCont.VIFLФLRecall:
B:MagneticFluxDensitydenoteФ
H:MagneticFluxIntensityormmfdenoteFo:Constantofpermeabilityoffreespacer:Constantofpermeabilityofelectricalsteel
PhasorDiagramCont.VIFLФLRec61CylindricalRotorSynchronousMachine:Duetotheevenairgap,theformulationsforbasicmachinequantitiesissimplified.Wewillconsiderthecylindricalmachinetheoryfirstandthenextendtheanalysistothesalientpolecase.CylindricalRotorSynchronous62AxisofFieldAxisofPhaseA90°lagArmaturecurrentmmfFarResultantmmfFrFieldmmfFfRotorRotationStatorRotorNSStatorI.D.RotorO.D.AxisofFieldAxisofPhaseA9063IaVtIaraEintEaΦar-ΦarfΦfRjIaxAjIax1Φr-ararErIaVtIaraEintEaΦar-ΦarfΦfRjI64CylindricalRotorPhasorDiagramForSynchronousGeneratorVt: TerminalVoltageIa: StatorCurrentLagsterminalVoltagebyAngleEa: AirGapVoltage,thevoltageinducedintothearmaturebythe fieldvoltageactingalone,the“opencircuit”voltageEr: ReactivevoltageproducedbyarmaturefluxEint: ResultantVoltageintheAirGapar: FluxfromArmaturecurrent(ArmatureReaction)f: Fluxduetofieldcurrentr: Resultantfluxar+fFf: mmfofFieldAar: mmfofArmatureCurrent(ArmatureReaction)FR: Resultantmmf,thesumofF+AIara: Voltagedropofarmatureresistance Iaxl: ReactivevoltagedropofArmatureleakagereactanceIaxA: ReactivevoltagedropofreactanceofArmaturereactionCylindricalRotorPhasorDiagr65FromthediagramitisevidentthatEr,thevoltageinducedinthestatorbytheeffectofthearmaturereactionflux,isinphasewithIaXl.ThesummationofErandIaXlgivesthetotalreactivevoltageproducedinthearmaturecircuitbythearmatureflux.TheratioofthistotalvoltagetoarmaturecurrentisdefinedasXsorthesynchronousreactance.Fromthediagramitisevident66SalientPoleSynchronousMachinesSalientPoleSynchronousMachi67SalientPoleSynchronousMachineSalientPoleSynchronousMachi68TwoReactionTheoryOneoftheconceptsusedincylindricalrotortheorywasthesummationofbothfluxandmmfwaveforms.r=f+arandFr=Ff+FarThisisallowedsince
B=orHandthemagneticpermeabilityoftheairgapisconstantaroundtherotorHoweverforsalientpolemachines,thepermeabilityofthefluxpathvariessignificantlyastheratioofairgaptosteelchanges.Thereforerf+ar
TwoReactionTheoryOneofthe69SalientPoleSynchronousMachineWithasalientpolemachine,asinusoidaldistributionoffluxcannotbeassumedintheairgapduetothevariationinmagneticpermeancealongtheairgap.However,owingtothesymmetryofasalientpolemachinealongthedirectandquadratureaxis,asinusoidaldistributionofmmfcanbeassumedalongeachaxis.BreakthemmfofthearmaturecurrentAarintotwocomponents,AdandAq.AdisthecomponentofAarthatworksalongthedirectaxisandAqisthecomponentofAarcenteredonthequadratureaxis.SalientPoleSynchronousMachi70TwoReactionTheory:IntroductionIfyouacceptthatAarcanbebrokenintotwocomponentsAdandAq,itfollowsthatforeachmmfwaveform,aemfwaveformexists90degreesoutofphasewithit.SoAdhasanassociatedEd,andAqhasanassociatedEq.ThesevoltagedropscanbethoughofhasbeingcreatedbyafictitiousreactancedropEd=XadIdandEq=XaqIq
,whereId: DirectaxiscomponentofarmaturecurrentIq:QuadratureaxiscomponentofarmaturecurrentXad:DirectaxisarmaturereactionreactanceXaq:QuadratureaxisarmaturereactionreactanceTwoReactionTheory:Introduct71IaVtIaraEintEaΦarθjIaxAAjIax1IdxldIqxlqIdxAdIqxAqForCylindricalRotor:Ia2=Id2+Iq2Xld=XlqXAd=XAqIaVtIaraEintEaΦarθjIaxAAjIax1I72TwoReactionDiagramSinceforaCylindricalRotor:Ia2=Id2+Iq2and(IaXs)2=(IdXd)2+(IqXq)2Xld=XlqXAd=XAqXs=Xd=XqItisnotnecessarytousetworeactiontheorytodescribethequantitiesofacylindricalrotormachine.TwoReactionDiagramSincefor73EaIqIaIdΦfΦrΦaqΦadΦarPhasorDiagramofaSalientPoleSynchronousGeneratorEaIqIaIdΦfΦrΦaqΦadΦarPhasorDi74IaVtIdEintIqK1EintIdxadIqxaqEaIaraIaxlIa:StatorcurrentVt:StatorterminalVoltageIra:VoltageofstatorresistanceIxl:VoltageofstatorleakagereactanceEint:InternalairgapvoltageK1Eint:Extrammfrequiredtoovercomestatorsaturation,K1issaturationfactorIdxad:reactivevoltagedropdirectaxisIdxaq:ReactivevoltagedropquadratureaxisEa:Totalsumofdirectaxisvoltage,airgap voltage,opencircuitvoltage?εδId=Iasin(+δ)Iq=Iasin(+δ)IaVtIdEintIqK1EintIdxadIqxaqE75PoleFaceDesign-MagneticFieldsThemmfwaveofarmaturereactionandthemmfwaveofthepolearecreatedontwodifferentsidesoftheairgapbutmustbecombinedtodeterminearesultantmmf.Todothiswemustdetermineconversionfactorstoconvertanstatorsidemmftoandequivalentrotorsidemmf.90°lagArmaturecurrentmmfFarResultantmmfFrFieldmmfFfRotorRotationStatorRotorNSPoleFaceDesign-MagneticFi76PoleFaceDesign–MagneticFieldsC1:Ifpeakofthefundamentalisunity,thenC1ispeakofacutalwaveform.NotethatWiesemancallsthisA1No-Load:motorisexcitedbythefieldwindingonlyPoleFaceDesign–MagneticFi77PoleFaceDesign–MagneticFieldCd1:Ifpeakofthefundamentalisunity,thenCd1ispeakofacutalwaveform.NotethatWiesemancallsthisAd1ArmaturemmfSinewavewhoseaxiscoincideswiththepolecenterPoleFaceDesign–MagneticFi78PoleFaceDesign–MagneticFieldCq1:Ifpeakofthefundamentalisunity,thenCq1ispeakofacutalwaveform.NotethatWiesemancallsthisAq1ArmaturemmfSinewavewhoseaxiscoincideswiththegapbetweenpolesPoleFaceDesign–MagneticFi79ListofPoleConstantsCd1–RatioofthefundamentaloftheairgapfluxproducedbythedirectaxisarmaturecurrenttothatwhichwouldbeproducedwithauniformgapequaltotheeffectivegapatthepolecenterCq1–RatioofthefundamentaloftheairgapfluxproducedbythequadratureaxisarmaturecurrenttothatwhichwouldbeproducedwithauniformgapequaltotheeffectivegapatthepolecenterC1–Theratioofthefundamentaltotheactualmaximumvalueofthefieldformwhenexcitedbythefieldonly(no-load)Cm–Ratiooffundamentalairgapfluxproducedbythefundamentalofarmaturemmftothatproducedbythefieldforthesamemaximummmf.Thisisthearmaturereactionconversionfactorforthedirectaxis.Cm=Cd1/C1K–Fluxdistributioncoefficient;theratiooftheareaoftheactualnoloadfluxwavetotheareaofitsfundamentalListofPoleConstantsCd1–R80PoleConstantsWhatfollowsaregraphsthatrelatethephysicalgeometryofthepoletothepoleconstants.ThesegraphscanbefoundintheappendixofEngineeringNote106.Thegraphsintheengineeringnoteareidenticaltographsthatfirstappearedina1927AIEEpapertitledGraphicalDeterminationofMagneticFieldsbyRobertWieseman.PoleConstantsWhatfollowsare81PoleConstantsWiesemanusedhandplottingtechniquestoplotthefluxfieldsofseveralhundredsofpoleshapestocomeupwiththegraphs.Duetotheintensivenatureofthework,thegraphsareplottedforalimitedrangeofpolegeometry:Polearc/Polepitch=0.5to.75 Gmax/Gmin=1.0to3.0 Minimumgap/polepitch=.005to.05 SincethesecurvesareusedbySMDStocalculatemotorperformance,SMDSwillnotrunwithanyoneofthesethreevariablesoutsideofthegivenrange.Thereisnoreason,besidesthelimitationsoftheoriginalcurves,whyvariablesoutsidetherangeslistedabovecouldn’tbeused.PoleConstantsWiesemanusedha82PoleFaceDesign–MagneticFieldsDeterminationofKPoleFaceDesign–MagneticFi83PoleFaceDesign–MagneticFieldsDeterminationofC1PoleFaceDesign–MagneticFi84PoleFaceDesign–MagneticFieldsDeterminationofCq1PoleFaceDesign–MagneticFi85PoleFaceDesign–MagneticFieldsDeterminationofCd1PoleFaceDesign–MagneticFi86PoleFaceDesign–MagneticFieldsPolefacedesignscomeintwoflavors,singleradiusanddoubleradius.Thereasonforthisistheshapeofthepoleheadrelativetothestatorboreradiushasalargeinfluenceoftheshapeofthefieldfluxwaveform.PoleFaceDesign–MagneticFi87ReactanceCalculationsXad=ReactanceofarmaturereactiondirectedalongthedirectaxisXaq=ReactanceofarmaturereactiondirectedalongthequadratureaxisT=CommonReactanceFactora=PermeanceFactorCd1=PoleConstantCq1=PoleConstantReactanceCalculationsXad=Re88T=CommonReactanceFactorm=#phasesL=StatorCoreLengthf=frequencyZ=SeriesConductorsperPhaseKw=WindingfactorStatorP=#PolesReactanceCalculationsT=CommonReactanceFactorRea89a=PermeanceFactorD=DiameterofStatorBoreP=#PolesKg=Carter’sGapCoefficeintgmin=MinimumairgapatcenterofpoleReactanceCalculationsa=PermeanceFactorReactance90ArmatureLeakageReactanceisdeterminedusingamethodologyidenticaltotheinductionmachine.SynchronousReactancesXd=Xl+XadXq=Xl+XaqArmatureLeakageReactanceis91ExcitationCalculations1.CalculatetotalMagneticFlux2.ConvertarmaturemagneticFluxtoFieldEquivalent3.CalculateEintbyaddingarmatureresistanceandleakagereactance
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 課題開題報告:數(shù)字化實驗與課堂融合教學研究
- 課題開題報告:數(shù)據(jù)賦能高校學生思想動態(tài)感知體系研究
- 課題開題報告:涉農(nóng)高校教育數(shù)字化發(fā)展機制與實施路徑研究
- 一年級信息技術(shù)下冊 正確坐姿和指法-基本鍵打字練習教學實錄 河大版
- 人教版八年級上冊歷史與社會教學設(shè)計:第3、4單元
- 2025年插件項目構(gòu)思建設(shè)方案
- 中小學安全教育日活動方案2023年
- 關(guān)于普通高校排球隊接發(fā)球訓練現(xiàn)狀及對策研究
- 【中移智庫】AI+通信業(yè)務(wù)白皮書(2025年)
- 精裝修年終總結(jié)及規(guī)劃
- 中英文介紹上海
- 空分制氧工基礎(chǔ)知識題庫完整
- 茶樹栽培學茶樹的修剪課件
- 辦公用品申購單
- 檢驗流程圖樣板
- 《新課標高中化學學業(yè)水平考試合格考知識點總結(jié)》
- 帶電子手表去學校的檢討
- 2022年春新冀人版科學五年級下冊全冊課件
- 導熱油使用操作規(guī)程
- 感受態(tài)細胞的制備(DH5α大腸桿菌)
- 中油即時通信安裝手冊(二廠)
評論
0/150
提交評論