版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高一上數(shù)學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12小題,共60分)1.設,,則的值為()A. B.C.1 D.e2.已知的值域為,那么的取值范圍是()A. B.C. D.3.基本再生數(shù)R0與世代間隔T是新冠肺炎流行病學基本參數(shù).基本再生數(shù)指一個感染者傳染的平均人數(shù),世代間隔指相鄰兩代間傳染所需的平均時間.在新冠肺炎疫情初始階段,可以用指數(shù)模型:描述累計感染病例數(shù)I(t)隨時間t(單位:天)的變化規(guī)律,指數(shù)增長率r與R0,T近似滿足R0=1+rT.有學者基于已有數(shù)據(jù)估計出R0=3.28,T=6.據(jù)此,在新冠肺炎疫情初始階段,累計感染病例數(shù)增加1倍需要的時間約為(ln2≈0.69)()A.1.2天 B.1.8天C.2.5天 D.3.5天4.平行四邊形中,若點滿足,,設,則A. B.C. D.5.已知函數(shù)(其中)的最小正周期為,則()A. B.C.1 D.6.已知函數(shù)為偶函數(shù),在單調遞減,且在該區(qū)間上沒有零點,則的取值范圍為()A. B.C. D.7.若圓上至少有三個不同的點到直線的距離為,則的取值范圍是()A. B.C. D.8.下列函數(shù)中最小值為6的是()A. B.C D.9.某幾何體的三視圖如圖所示,則該幾何體的表面積等于A. B.C. D.1510.已知函數(shù),且,則A.3 B.C.9 D.11.已知,若不等式恒成立,則的最大值為()A.13 B.14C.15 D.1612.對于函數(shù)的圖象,關于直線對稱;關于點對稱;可看作是把的圖象向左平移個單位而得到;可看作是把的圖象上所有點的縱坐標不變,橫坐標縮短到原來的倍而得到以上敘述正確的個數(shù)是A.1個 B.2個C.3個 D.4個二、填空題(本大題共4小題,共20分)13.若函數(shù)的定義域為R,則實數(shù)m的取值范圍是______14.若將函數(shù)的圖象向左平移個單位長度,得到函數(shù)的圖象,則的最小值為______15.已知函數(shù)若方程恰有三個實數(shù)根,則實數(shù)的取值范圍是_______.16.《九章算術》是中國古代的數(shù)學名著,其中《方田》一章涉及到了弧田面積的計算問題,如圖所示,弧田是由弧AB和弦AB所圍成的圖中陰影部分若弧田所在圓的半徑為1,圓心角為,則此弧田的面積為____________.三、解答題(本大題共6小題,共70分)17.已知集合:①;②;③,集合(m為常數(shù)),從①②③這三個條件中任選一個作為集合A,求解下列問題:(1)定義,當時,求;(2)設命題p:,命題q:,若p是q成立的必要不充分條件,求實數(shù)m的取值范圍18.已知函數(shù),,當時,恒有(1)求的表達式及定義域;(2)若方程有解,求實數(shù)的取值范圍;(3)若方程的解集為,求實數(shù)的取值范圍19.已知集合A={x|2-a?x?2+a},B={x|(1)當a=3時,求A∩B,A∪?(2)若A∩B=?,求實數(shù)a的取值范圍20.已知角的終邊經(jīng)過點.(1)求的值;(2)求的值.21.已知,,,為第二象限角,求和的值.22.已知(1)求函數(shù)的單調遞增區(qū)間與對稱軸方程;(2)當時,求的最大值與最小值
參考答案一、選擇題(本大題共12小題,共60分)1、A【解析】根據(jù)所給分段函數(shù)解析式計算可得;【詳解】解:因為,,所以,所以故選:A2、C【解析】先求得時的值域,再根據(jù)題意,當時,值域最小需滿足,分析整理,即可得結果.【詳解】當,,所以當時,,因為的值域為R,所以當時,值域最小需滿足所以,解得,故選:C【點睛】本題考查已知函數(shù)值域求參數(shù)問題,解題要點在于,根據(jù)時的值域,可得時的值域,結合一次函數(shù)的圖像與性質,即可求得結果,考查分析理解,計算求值的能力,屬基礎題.3、B【解析】根據(jù)題意可得,設在新冠肺炎疫情初始階段,累計感染病例數(shù)增加1倍需要的時間為天,根據(jù),解得即可得結果.【詳解】因為,,,所以,所以,設在新冠肺炎疫情初始階段,累計感染病例數(shù)增加1倍需要的時間為天,則,所以,所以,所以天.故選:B.【點睛】本題考查了指數(shù)型函數(shù)模型的應用,考查了指數(shù)式化對數(shù)式,屬于基礎題.4、B【解析】畫出平行四邊形,在上取點,使得,在上取點,使得,由圖中幾何關系可得到,即可求出的值,進而可以得到答案【詳解】畫出平行四邊形,在上取點,使得,在上取點,使得,則,故,,則.【點睛】本題考查了平面向量的線性運算,考查了平面向量基本定理的應用,考查了平行四邊形的性質,屬于中檔題5、D【解析】根據(jù)正弦型函數(shù)的最小正周期求ω,從而可求的值.【詳解】由題可知,,∴.故選:D.6、D【解析】根據(jù)函數(shù)為偶函數(shù),得到,再根據(jù)函數(shù)在單調遞減,且在該區(qū)間上沒有零點,由求解.【詳解】因為函數(shù)為偶函數(shù),所以,由,得,因為函數(shù)在單調遞減,且在該區(qū)間上沒有零點,所以,解得,所以的取值范圍為,故選:D7、D【解析】先整理圓的方程為可得圓心和半徑,再轉化問題為圓心到直線的距離小于等于,進而求解即可【詳解】由題,圓標準方程為,所以圓心為,半徑,因為圓上至少有三個不同點到直線的距離為,所以,所以圓心到直線的距離小于等于,即,解得,故選:D【點睛】本題考查直線與圓的位置關系的應用,考查圓的一般方程到圓的標準方程的轉化,考查數(shù)形結合思想8、B【解析】利用基本不等式逐項分析即得.【詳解】對于A,當時,,故A錯誤;對于B,因為,所以,當且僅當,即時取等號,故B正確;對于C,因為,所以,當且僅當,即,等號不能成立,故C錯誤;對于D,當時,,故D錯誤.故選:B.9、B【解析】根據(jù)三視圖可知,該幾何體為一個直四棱柱,底面是直角梯形,兩底邊長分別為,高為,直四棱柱的高為,所以底面周長為,故該幾何體的表面積為,故選B考點:1.三視圖;2.幾何體的表面積10、C【解析】利用函數(shù)的奇偶性以及已知條件轉化求解即可【詳解】函數(shù)g(x)=ax3+btanx是奇函數(shù),且,因為函數(shù)f(x)=ax3+btanx+6(a,b∈R),且,可得=﹣3,則=﹣g()+6=3+6=9故選C【點睛】本題考查函數(shù)的奇偶性的應用,函數(shù)值的求法,考查計算能力.已知函數(shù)解析式求函數(shù)值,可以直接將變量直接代入解析式從而得到函數(shù)值,直接代入較為繁瑣的題目,可以考慮函數(shù)的奇偶性的應用,利用部分具有奇偶性的特點進行求解,就如這個題目.11、D【解析】用分離參數(shù)法轉化為恒成立,只需,再利用基本不等式求出的最小值即可.【詳解】因為,所以,所以恒成立,只需因為,所以,當且僅當時,即時取等號.所以.即的最大值為16.故選:D12、B【解析】由判斷;由判斷;由的圖象向左平移個單位,得到的圖象判斷;由的圖象上所有點的縱坐標不變,橫坐標縮短到原來的倍,得到函數(shù)的圖象判斷.【詳解】對于函數(shù)的圖象,令,求得,不是最值,故不正確;令,求得,可得的圖象關于點對稱,故正確;把的圖象向左平移個單位,得到的圖象,故不正確;把的圖象上所有點的縱坐標不變,橫坐標縮短到原來的倍,得到函數(shù)的圖象,故正確,故選B【點睛】本題通過對多個命題真假的判斷,綜合考查三角函數(shù)的對稱性以及三角函數(shù)的圖象的變換規(guī)律,屬于中檔題.這種題型綜合性較強,也是高考的命題熱點,同學們往往因為某一處知識點掌握不好而導致“全盤皆輸”,因此做這類題目更要細心、多讀題,盡量挖掘出題目中的隱含條件,另外,要注意從簡單的自己已經(jīng)掌握的知識點入手,然后集中精力突破較難的命題.二、填空題(本大題共4小題,共20分)13、【解析】由題意得到時,恒成立,然后根據(jù)當和時,進行分類討論即可求出結果.詳解】依題意,當時,恒成立當時,,符合題意;當時,則,即解得,綜上,實數(shù)m的取值范圍是,故答案:14、;【解析】因為函數(shù)的圖象向左平移個單位長度,得到,所以的最小值為15、【解析】令f(t)=2,解出t,則f(x)=t,討論k的符號,根據(jù)f(x)的函數(shù)圖象得出t的范圍即可【詳解】解:令f(t)=2得t=﹣1或t(k≠0)∵f(f(x))﹣2=0,∴f(f(x))=2,∴f(x)=﹣1或f(x)(k≠0)(1)當k=0時,做出f(x)的函數(shù)圖象如圖所示:由圖象可知f(x)=﹣1無解,即f(f(x))﹣2=0無解,不符合題意;(2)當k>0時,做出f(x)的函數(shù)圖象如圖所示:由圖象可知f(x)=﹣1無解,f(x)無解,即f(f(x))﹣2=0無解,不符合題意;(3)當k<0時,做出f(x)的函數(shù)圖象如圖所示:由圖象可知f(x)=﹣1有1解,∵f(f(x))﹣2=0有3解,∴f(x)有2解,∴1,解得﹣1<k綜上,k的取值范圍是(﹣1,]故答案為(﹣1,]【點睛】本題考查了函數(shù)零點個數(shù)與函數(shù)圖象的關系,數(shù)形結合思想,屬于中檔題16、【解析】根據(jù)題意所求面積,再根據(jù)扇形和三角形面積公式,進行求解即可.【詳解】易知為等腰三角形,腰長為,底角為,,所以,弧田的面積即圖中陰影部分面積,根據(jù)扇形面積及三角形面積可得:所以.故答案為:.三、解答題(本大題共6小題,共70分)17、(1);(2)【解析】(1)求出集合的范圍,取交集即可(2)求出集合的范圍,根據(jù)p是q成立的必要不充分條件,得到,從而求出參數(shù)的取值范圍【小問1詳解】選①:,若,即時,即,解得,若,則,無解,所以的解集為,故,由,可得,即,解得,故,則選②:,解得,故,,,即,解得,故,則選③:,,解得,故,,,即,解得,故,則【小問2詳解】由,即,解得,因為p是q成立的必要不充分條件,所以,所以或,解得,故m的取值范圍為18、(1),;(2);(3)【解析】(1)由已知中函數(shù),,當時,恒有,我們可以構造一個關于方程組,解方程組求出的值,進而得到的表達式;(2)轉化為,解得,可求出滿足條件的實數(shù)的取值范圍.(3)根據(jù)對數(shù)的運算性質,轉化為一個關于的分式方程組,進而根據(jù)方程的解集為,則方程組至少一個方程無解或兩個方程的解集的交集為空集,分類討論后,即可得到答案.【詳解】(1)∵當時,,即,即,整理得恒成立,∴,又,即,從而∴,∵,∴,或,∴的定義域為(2)方程有解,即,∴,∴,∴,∴,或,解得或,∴實數(shù)的取值范圍(3)方程的解集為,∴,∴,∴,方程的解集為,故有兩種情況:①方程無解,即,得,②方程有解,兩根均在內,,則解得綜合①②得實數(shù)的取值范圍是【點睛】關鍵點點睛:函數(shù)與方程、對數(shù)函數(shù)的單調性解不等式以及一元二次方程根的分布,綜合性比較強,根據(jù)轉化思想,不斷轉化是解題的關鍵,考查了分類討論的思想,屬于難題.19、(1)A∩B={x|-1?x?1或4?x?5};A∪?RB【解析】(1)a=3時求出集合A,B,再根據(jù)集合的運算性質計算A∩B和A∪?(2)根據(jù)A∩B=?,討論A=?和A≠?時a的取值范圍,從而得出實數(shù)a的取值范圍【詳解】解:(1)當a=3時,A={x|2-a?x?2+a}={x|-1?x?5},B={x|x2-5x+4?0}={x|x?1A∩B={x|-1?x?1或4?x?5};又?RA∪?(2)A∩B=?,當2-a>2+a,即a<0時,A=?,滿足題意;當a?0時,應滿足2-a>12+a<4,此時得0?a<1綜上,實數(shù)a的取值范圍是(-∞,1)【點睛】本題考查了集合的基本運算以及不等式解法問題,注意等價變形的應用,屬于中檔題20、(1);(2).【解析】因為角終邊經(jīng)過點,設,,則,所以,,.(1)即得解;(2)化簡即可得解.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 亳州學院《城鄉(xiāng)生態(tài)與環(huán)境規(guī)劃》2023-2024學年第一學期期末試卷
- 畢節(jié)職業(yè)技術學院《校本課程開發(fā)與綜合實踐活動》2023-2024學年第一學期期末試卷
- 畢節(jié)幼兒師范高等??茖W?!峨娨曀囆g概論》2023-2024學年第一學期期末試卷
- 畢節(jié)醫(yī)學高等??茖W?!兑?guī)范寫作B》2023-2024學年第一學期期末試卷
- 畢節(jié)工業(yè)職業(yè)技術學院《微生物實驗》2023-2024學年第一學期期末試卷
- 2025年度班組抹灰施工材料回收利用合同3篇
- 2025版車輛租賃合同:含車輛美容及保養(yǎng)服務協(xié)議3篇
- 2025版高校產(chǎn)學研合作培訓項目合同3篇
- 2025版建筑行業(yè)勞動合同安全監(jiān)管與預防措施合同3篇
- 二零二五年度XX醫(yī)院醫(yī)院醫(yī)學影像診斷聘用合同樣本3篇
- 2024-2025學年上學期廣州初中地理八年級期末模擬卷2
- 中考語文真題專題復習 小說閱讀(第01期)(解析版)
- 2025版國家開放大學法律事務??啤斗勺稍兣c調解》期末紙質考試單項選擇題題庫
- 2024年世界職業(yè)院校技能大賽中職組“嬰幼兒保育組”賽項考試題庫-下(多選、判斷題)
- 期末模擬考試卷02-2024-2025學年上學期高一思想政治課《中國特色社會主義》含答案
- 2023年中國鐵路南寧局集團有限公司招聘考試真題
- 汽車底盤課件 課程3 手動變速器的構造與維修
- 微創(chuàng)手術機器人醫(yī)療器械行業(yè)營銷策略方案
- 軟件系統(tǒng)日常運維服務方案
- GB/T 11017.2-2024額定電壓66 kV(Um=72.5 kV)和110 kV(Um=126 kV)交聯(lián)聚乙烯絕緣電力電纜及其附件第2部分:電纜
- 飛灰二惡英類低溫催化分解污染控制技術規(guī)范-編制說明(征求意見稿)
評論
0/150
提交評論