版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學年高一上數(shù)學期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知函數(shù),則使得成立的的取值范圍是()A. B.C. D.2.如圖,PO是三棱錐P-ABC底面ABC的垂線,垂足為O①若PA⊥BC,PB⊥AC,則點O是△ABC的垂心;②若PA=PB=PC,則點O是△ABC的外心;③若∠PAB=∠PAC,∠PBA=∠PBC,則點O是△ABC的內(nèi)心;④過點P分別做邊AB,BC,AC的垂線,垂足分別為E,F(xiàn),G,若PE=PF=PG,則點O是△ABC的重心以上推斷正確的個數(shù)是()A.1 B.2C.3 D.43.已知集合,,若,則實數(shù)的取值范圍是()A. B.C. D.4.下列函數(shù)中,是偶函數(shù),且在區(qū)間上單調(diào)遞增的為()A. B.C. D.5.直線與圓相交于兩點,若,則的取值范圍是A. B.C. D.6.函數(shù)在上的部分圖象如圖所示,則的值為A. B.C. D.7.函數(shù)單調(diào)遞增區(qū)間為A. B.C. D.8.圓與直線相交所得弦長為()A.1 B.C.2 D.29.若單位向量,滿足,則向量,夾角的余弦值為()A. B.C. D.10.為了得到函數(shù),的圖象,只要把函數(shù),圖象上所有的點()A.向左平移個單位長度 B.向右平移個單位長度C.向左平移個單位長度 D.向右平移個單位長度二、填空題:本大題共6小題,每小題5分,共30分。11.水車在古代是進行灌溉引水的工具,是人類的一項古老的發(fā)明,也是人類利用自然和改造自然的象征.如圖是一個半徑為的水車,以水車的中心為原點,過水車的中心且平行于水平面的直線為軸,建立如圖平面直角坐標系,一個水斗從點出發(fā),沿圓周按逆時針方向勻速旋轉(zhuǎn),且旋轉(zhuǎn)一周用時秒.經(jīng)過秒后,水斗旋轉(zhuǎn)到點,設(shè)點的坐標為,其縱坐標滿足,當秒時,___________.12.某班有學生45人,參加了數(shù)學小組的學生有31人,參加了英語小組的學生有26人.已知該班每個學生都至少參加了這兩個小組中的一個小組,則該班學生中既參加了數(shù)學小組,又參加了英語小組的學生有___________人.13.已知,,且,則的最小值為________.14.已知α∈.若冪函數(shù)f(x)=xα為奇函數(shù),且在(0,+∞)上遞減,則=______.15.已知角的頂點為坐標原點,始邊為x軸的正半軸,若是角終邊上一點,且,則y=_______.16.已知函數(shù)的圖象過原點,且無限接近直線,但又不與該直線相交,則______三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù)定義域為,若對于任意的,都有,且時,有.(1)判斷并證明函數(shù)的奇偶性;(2)判斷并證明函數(shù)的單調(diào)性;(3)若對所有,恒成立,求的取值范圍.18.已知函數(shù),函數(shù)為R上的奇函數(shù),且.(1)求的解析式:(2)判斷在區(qū)間上的單調(diào)性,并用定義給予證明:(3)若的定義域為時,求關(guān)于x的不等式的解集.19.十九大指出中國的電動汽車革命早已展開,通過以新能源汽車替代汽/柴油車,中國正在大力實施一項將重塑全球汽車行業(yè)的計劃,2020年某企業(yè)計劃引進新能源汽車生產(chǎn)設(shè)備看,通過市場分析,全年需投入固定成本3000萬元,每生產(chǎn)x(百輛)需另投入成本y(萬元),且由市場調(diào)研知,每輛車售價6萬元,且全年內(nèi)生產(chǎn)的車輛當年能全部銷售完(1)求出2020年的利潤S(萬元)關(guān)于年產(chǎn)量x(百輛)的函數(shù)關(guān)系式;(利潤=銷售額減去成本)(2)當2020年產(chǎn)量為多少百輛時,企業(yè)所獲利潤最大?并求出最大利潤20.已知,函數(shù).(1)若有兩個零點,且的最小值為,當時,判斷函數(shù)在上的單調(diào)性,并說明理由;(2)設(shè),記為集合中元素的最大者與最小者之差.若對,恒成立,求實數(shù)a的取值范圍.21.某種蔬菜從1月1日起開始上市,通過市場調(diào)查,得到該蔬菜種植成本(單位:元/)與上市時間(單位:10天)數(shù)據(jù)如下表:時間51125種植成本1510.815(1)根據(jù)上表數(shù)據(jù),從下列函數(shù):,,,中(其中),選取一個合適的函數(shù)模型描述該蔬菜種植成本與上市時間的變化關(guān)系;(2)利用你選取的函數(shù)模型,求該蔬菜種植成本最低時的上市時間及最低種植成本.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】令,則,從而,即可得到,然后構(gòu)造函數(shù),利用導數(shù)判斷其單調(diào)性,進而可得,解不等式可得答案【詳解】令,則,,所以,所以,令,則,所以,所以,所以在單調(diào)遞增,所以由,得,所以,解得,故選:C【點睛】關(guān)鍵點點睛:此題考查不等式恒成立問題,考查函數(shù)單調(diào)性的應(yīng)用,解題的關(guān)鍵是換元后對不等式變形得,再構(gòu)造函數(shù),利用函數(shù)的單調(diào)性解不等式.2、C【解析】①由題意得出AO⊥BC,BO⊥BC,點O是△ABC的垂心;②若PA=PB=PC,則AO=BO=CO,點O是△ABC的外心;③由題意得出AO是∠BAC的平分線,BO是∠ABC的平分線,O是△ABC的內(nèi)心;④若PE=PF=PG,則OE=OF=OG,點O是△ABC的內(nèi)心【詳解】對于①,PO⊥底面ABC,∴PO⊥BC,又PA⊥BC,∴BC⊥平面PAO,∴AO⊥BC;同理PB⊥AC,得出BO⊥BC,∴點O是△ABC的垂心,①正確;對于②,若PA=PB=PC,由此推出Rt△PAO≌Rt△PBO≌Rt△PCO,∴AO=BO=CO,點O是△ABC的外心,②正確;對于③,若∠PAB=∠PAC,且PO⊥底面ABC,則AO是∠BAC的平分線,同理∠PBA=∠PBC時BO是∠ABC平分線,∴點O是△ABC的內(nèi)心,③正確;對于④,過點P分別做邊AB,BC,AC的垂線,垂足分別為E,F(xiàn),G,若PE=PF=PG,則OE=OF=OG,點O是△ABC的內(nèi)心,④錯誤綜上,正確的命題個數(shù)是3故選C【點睛】本題主要考查了空間中的直線與平面的垂直關(guān)系應(yīng)用問題,是中檔題3、A【解析】集合表示到的線段,集合表示過定點的直線,,說明線段和過定點的直線有交點,由此能求出實數(shù)的取值范圍【詳解】由題意可得,集合表示到的線段上的點,集合表示恒過定點的直線.∵∴線段和過定點的直線有交點∴根據(jù)圖像得到只需滿足,或故選A.【點睛】本題考查交集定義等基礎(chǔ)知識,考查函數(shù)與方程思想、數(shù)形結(jié)合思想,是基礎(chǔ)題.解答本題的關(guān)鍵是理解集合表示到的線段,集合表示過定點的直線,再通過得出直線與線段有交點,通過對應(yīng)的斜率求解.4、D【解析】根據(jù)基本初等函數(shù)的奇偶性及單調(diào)性逐一判斷.【詳解】A.在其定義域上為奇函數(shù);B.,在區(qū)間上時,,其為單調(diào)遞減函數(shù);C.在其定義域上為非奇非偶函數(shù);D.的定義域為,在區(qū)間上時,,其為單調(diào)遞增函數(shù),又,故在其定義域上為偶函數(shù).故選:D.5、C【解析】圓,即.直線與圓相交于兩點,若,設(shè)圓心到直線距離.則,解得.即,解得故選C.點睛:直線與圓的位置關(guān)系常用處理方法:(1)直線與圓相切處理時要利用圓心與切點連線垂直,構(gòu)建直角三角形,進而利用勾股定理可以建立等量關(guān)系;(2)直線與圓相交,利用垂徑定理也可以構(gòu)建直角三角形;(3)直線與圓相離時,當過圓心作直線垂線時長度最小6、C【解析】由圖象最值和周期可求得和,代入可求得,從而得到函數(shù)解析式,代入可求得結(jié)果.【詳解】由圖象可得:,代入可得:本題正確選項:【點睛】本題考查三角函數(shù)值的求解,關(guān)鍵是能夠根據(jù)正弦函數(shù)的圖象求解出函數(shù)的解析式.7、A【解析】,所以.故選A8、D【解析】利用垂徑定理可求弦長.【詳解】圓的圓心坐標為,半徑為,圓心到直線的距離為,故弦長為:,故選:D.9、A【解析】將平方可得,再利用向量夾角公式可求出.【詳解】,是單位向量,,,,即,即,解得,則向量,夾角的余弦值為.故選:A.10、C【解析】利用輔助角公式可得,再由三角函數(shù)的平移變換原則即可求解.【詳解】解:,,為了得到函數(shù),的圖象,只要把函數(shù),圖象上所有的點向左平移個單位長度故選:C.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】求出關(guān)于的函數(shù)解析式,將代入函數(shù)解析式,求出的值,可得出點的坐標,進而可求得的值.【詳解】由題意可知,,函數(shù)的最小正周期為,則,所以,,點對應(yīng),,則,可得,,,故,當時,,因為,故點不與點重合,此時點,則.故答案為:.12、12【解析】設(shè)該班學生中既參加了數(shù)學小組,又參加了英語小組的學生有人,列方程求解即可.【詳解】設(shè)該班學生中既參加了數(shù)學小組,又參加了英語小組的學生有人,則.故答案為:12.13、12【解析】,展開后利用基本不等式可求【詳解】∵,,且,∴,當且僅當,即,時取等號,故的最小值為12故答案為:1214、-1【解析】根據(jù)冪函數(shù),當為奇數(shù)時,函數(shù)為奇函數(shù),時,函數(shù)在(0,+∞)上遞減,即可得出答案.【詳解】解:∵冪函數(shù)f(x)=xα為奇函數(shù),∴可取-1,1,3,又f(x)=xα在(0,+∞)上遞減,∴α<0,故=-1.故答案為:-1.15、-8【解析】答案:-8.解析:根據(jù)正弦值為負數(shù),判斷角在第三、四象限,再加上橫坐標為正,斷定該角為第四象限角.16、##0.75【解析】根據(jù)條件求出,,再代入即可求解.【詳解】因為的圖象過原點,所以,即.又因為的圖象無限接近直線,但又不與該直線相交,所以,,所以,所以故答案為:三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)為奇函數(shù);證明見解析;(2)是在上為單調(diào)遞增函數(shù);證明見解析;(3)或.【解析】(1)根據(jù)已知等式,運用特殊值法和函數(shù)奇偶性的定義進行判斷即可;(2)根據(jù)函數(shù)的單調(diào)性的定義,結(jié)合已知進行判斷即可;(3)根據(jù)(1)(2),結(jié)合函數(shù)的單調(diào)性求出函數(shù)在的最大值,最后根據(jù)構(gòu)造新函數(shù),利用新函數(shù)的單調(diào)性進行求解即可.詳解】(1)∵,令,得,∴,令可得:,∴,∴為奇函數(shù);(2)∵是定義在上的奇函數(shù),由題意設(shè),則,由題意時,有,∴,∴是在上為單調(diào)遞增函數(shù);(3)∵在上為單調(diào)遞增函數(shù),∴在上的最大值為,∴要使,對所有,恒成立,只要,即恒成立;令,得,∴或.【點睛】本題考查了函數(shù)單調(diào)性和奇偶性的判斷,考查了不等式恒成立問題,考查了數(shù)學運算能力.18、(1);(2)單調(diào)遞增.證明見解析;(3)【解析】(1)列方程組解得參數(shù)a、b,即可求得的解析式;(2)以函數(shù)單調(diào)性定義去證明即可;(3)依據(jù)奇函數(shù)在上單調(diào)遞增,把不等式轉(zhuǎn)化為整式不等式即可解決.【小問1詳解】由題意可知,即,解之得,則,經(jīng)檢驗,符合題意.【小問2詳解】在區(qū)間上單調(diào)遞增.設(shè)任意,且,則由,且,可得則,即故在區(qū)間上單調(diào)遞增.【小問3詳解】不等式可化為等價于,解之得故不等式的解集為19、(1)(2)100百輛時,1300萬元【解析】(1)分和,由利潤=銷售額減去成本求解;(2)由(1)的結(jié)果,利用二次函數(shù)和對勾函數(shù)的性質(zhì)求解.【小問1詳解】解:由題意得當,,當時,,所以;【小問2詳解】當時,,當時,,當時,由對勾函數(shù),當時,,時,,時,即2020年產(chǎn)量為100百輛時,企業(yè)所獲利潤最大,且最大利潤為1300萬元20、(1)函數(shù)在區(qū)間上是單調(diào)遞減,理由見解析(2)【解析】(1)運用單調(diào)性的定義去判斷或者根據(jù)函數(shù)本身的性質(zhì)去判斷即可;(2)區(qū)間與二次函數(shù)的對稱軸比較,從而的情況中分類討論,而后得到的解析式,通過函數(shù)解析式求出最小值,再解不等式即可.【小問1詳解】方法1:因為,由題意得,即,所以時,即,所以,,對于任意設(shè),所以,因為,又,所以而,所以,所以,所以函數(shù)在區(qū)間上是單調(diào)遞減的.方法2:因為,由題意得,即,所以時,即,所以,,因為,所以函數(shù)圖像的對稱軸方程為,因為,所以,即,所以函數(shù)在上是單調(diào)遞減的.【小問2詳解】設(shè),,因為函數(shù)對稱軸為,①當即時,在上單調(diào)遞減,,②當即時,,③當即時,,④當即時,在上單調(diào)遞增,,綜上可得:可知在上單調(diào)遞減,在上單調(diào)遞增,所以最小值為,對,恒成立,只需即可,解得,所以a的取值范圍是.21、(1);(2)該蔬菜上市150天時,該蔬菜種植成本最低為10(元/).【解析】(1)先作出散點圖,根據(jù)散點圖的分布即可判斷只有模型符合,然后將數(shù)據(jù)代入建立方程組,求出參數(shù).(2)由于模型為二次函數(shù),結(jié)合定義域,利用配方法即可求出最低種植成本以及對應(yīng)得上市時間.【詳解】解:(1)以上市時間(單位:10天)為橫坐標,以種植成本
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025建筑工程施工合同的
- 2025年度文化創(chuàng)意商鋪租賃合同范本(含知識產(chǎn)權(quán)保護協(xié)議)3篇
- 2025年度文化創(chuàng)意園區(qū)物業(yè)用房移交與知識產(chǎn)權(quán)保護合同3篇
- 二零二五年度全款購新能源汽車及充電站建設(shè)合同模板3篇
- 二零二五年度農(nóng)機作業(yè)與農(nóng)業(yè)產(chǎn)業(yè)扶貧合作合同3篇
- 2025年度高新技術(shù)園區(qū)融資合同范文匯編3篇
- 二零二五年度公司汽車轉(zhuǎn)讓協(xié)議:適用于汽車租賃公司車輛更新3篇
- 2025年度新能源公司合并投資協(xié)議2篇
- 二零二五年度全日制勞務(wù)合同書(高新技術(shù)企業(yè)研發(fā))2篇
- 二零二五年度供應(yīng)鏈金融借款協(xié)議3篇
- 錨索張拉記錄表
- 全國計算機等級考試二級Python復習備考題庫(含答案)
- 每日食品安全檢查記錄表
- JTG-D40-2011公路水泥混凝土路面設(shè)計規(guī)范
- 2024年4月自考02799獸醫(yī)臨床醫(yī)學試題
- 2024年全國高考體育單招考試語文試卷試題(含答案詳解)
- 市政工程勞動力計劃
- 2023年七年級語文上冊期末測試卷(完美版)
- MOOC 普通植物病理學-西北農(nóng)林科技大學 中國大學慕課答案
- 種雞場的飼養(yǎng)管理制度
- 一年級數(shù)學上冊口算比賽
評論
0/150
提交評論