空氣流動基本原理課件_第1頁
空氣流動基本原理課件_第2頁
空氣流動基本原理課件_第3頁
空氣流動基本原理課件_第4頁
空氣流動基本原理課件_第5頁
已閱讀5頁,還剩239頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

第二章空氣流動基本原理主要研究空氣流動過程中宏觀力學參數(shù)的變化規(guī)律以及能量的轉(zhuǎn)換關系。內(nèi)容:風流壓力、風流流動方程、通風阻力、通風網(wǎng)絡中風流的基本定律、簡單通風網(wǎng)絡特性、自然通風原理、風道壓力分布、局部通風進出口風流運動規(guī)律、置換通風原理等內(nèi)容。第二章空氣流動基本原理主要研究空氣流動過程中宏觀1本章學習目標1.掌握風道流動的空氣靜壓、位壓、動壓、全壓的概念及其相應關系2.掌握空氣流動的連續(xù)性方程和能量方程3.掌握紊流狀態(tài)下的摩擦阻力、局部阻力的計算4.了解風流流態(tài)與風道斷面的風速分布5.掌握通風網(wǎng)絡中風流的基本定律和簡單通風網(wǎng)路特性6.掌握自然風壓的計算方法7.了解風道通風壓力分布8.了解吸入口與吹出口氣流運動規(guī)律9.掌握均勻送風與置換通風方式的原理本章學習目標1.掌握風道流動的空氣靜壓、位壓、動壓、全壓的概2第一節(jié)風流壓力風流壓力:單位體積空氣所具有的能夠?qū)ν庾龉Φ臋C械能。一、靜壓1.概念由分子熱運動產(chǎn)生的分子動能的一部分轉(zhuǎn)化的能夠?qū)ν庾龉Φ臋C械能叫靜壓能,用Ep表示(J/m3)。當空氣分子撞擊到器壁上時就有了力的效應,這種單位面積上力的效應稱為靜壓力,簡稱靜壓,用p表示(N/m2,即Pa)工業(yè)通風中,靜壓即單位面積上受到的垂直作用力。第一節(jié)風流壓力風流壓力:單位體積空氣所具有的能夠?qū)ν?2.特點(1)無論靜止的空氣還是流動的空氣都具有靜壓力。(2)風流中任一點的靜壓各向同值,且垂直作用面。(3)風流靜壓的大?。捎脙x表測量)反映了單位體積風流所具有的能夠?qū)ν庾龉Φ撵o壓能的多少。3.表示方法(1)絕對靜壓:以真空為測算零點(比較基準)而測得的壓力,用p表示。(2)相對靜壓:以當?shù)禺敃r同標高的大氣壓力為測算基準(零點)而測得的壓力,即表壓力,用h表示。2.特點4P0BAPAPPBPAPBhA(+)hB(-)真空(0)圖2-1-1絕對靜壓、相對靜壓和大氣壓之間的關系P0BAPAPPBPAPBhA(+)hB(-)真空圖2-1-5風流的絕對靜壓(p)、相對靜壓(h)和與其對應的大氣壓(p0)三者之間的關系(見圖2-1-1):h=p-p0二、動壓1.概念當空氣流動時,除位壓和靜壓外,還有空氣定向運動的動能,用Ev表示,J/m3;其單位體積風流的動能所轉(zhuǎn)化顯現(xiàn)的壓力叫動壓或稱速壓,用hv表示,單位Pa。風流的絕對靜壓(p)、相對靜壓(h)和與其對應的大氣壓(62.計算設某點的空氣密度為ρi(kg/m3),其定向運動的流速即風速為i(m/s),則單位體積空氣所具有的動能為:

,J/m3Evi對外所呈現(xiàn)的動壓,Pa2.計算73.特點(1)只有做定向流動的空氣才具有動壓,因此動壓具有方向性。(2)動壓總大于零。當作用面與流動方向有夾角時,其感受到的動壓值將小于動壓真值。故在測量動壓時,應使感壓孔垂直于運動方向。(3)在同一流動斷面上,由于風速分布的不均勻性,各點的風速不相等,所以其動壓值不等。(4)某斷面動壓即為該斷面平均風速計算值。3.特點8三、位壓1.概念單位體積風流對于某基準面而具有的位能,稱為位壓,用hz表示。物體在地球重力場中因地球引力的作用,由于位置的不同而具有的一種能量,叫重力位能,簡稱位能,用Ep0表示。Ep0=MgZ,J三、位壓9abPiZ122211圖2-1-2位壓計算圖abPiZ122211圖2-1-2位壓計算圖102.計算在圖2-1-2所示的井筒中,求1-1、2-2兩斷面之間的位壓,取2-2點為基準面(2-2斷面的位能為零)。按下式計算1-1、2-2斷面間位壓:,J/m3此式是位壓的數(shù)學定義式。即兩斷面間的位壓的數(shù)值就等于兩斷面間單位面積上的空氣柱重量的數(shù)值。2.計算113.位壓與靜壓的關系當空氣靜止時(v=0),如圖2-1-2的系統(tǒng)。由空氣靜力學可知,各斷面的機械能相等。設2-2斷面為基準面,1-1斷面總機械能E1=Ep01+p12-2斷面總機械能E2=Ep02+p2由E1=E2得:Ep01+p1=Ep02+p2由于Ep02=0(以2-2斷面為基準面),Ep01=ρ12gZ12,又得p2=Ep01+p1=ρ12gZ12+p1

此即空氣靜止時,位壓與靜壓之間的關系。3.位壓與靜壓的關系124.位壓的特點(1)位壓是相對某一基準面具有的能量,它隨所選基準面的變化而變化。(2)位壓是一種潛在的能量,不能像靜壓那樣用儀表進行直接測量。(3)位壓和靜壓可以相互轉(zhuǎn)化,當空氣由標高高的斷面流至標高低的斷面時,位壓轉(zhuǎn)化為靜壓;反之,當空氣由標高低的斷面流至標高高的斷面時,靜壓轉(zhuǎn)化為位壓。4.位壓的特點13四、風流的全壓和機械能1.風流的全壓風流中某一點的動壓和靜壓之和稱為全壓。全壓也分為絕對全壓(pt)和相對全壓(ht)。在風流中某點i的絕對全壓均可用下式表示pti=pi+hvi式中pti——風流中i點的絕對全壓,Pa;pi——風流中i點的絕對靜壓,Pa;hvi——風流中i點的動壓,Pa。由上式可知,風流中的任一點的絕對全壓恒大于絕對靜壓;相對全壓有正負之分,與通風方式有關。四、風流的全壓和機械能142.單位體積風流的機械能根據(jù)能量的概念,單位體積風流的機械能為單位體積風流的靜壓能、動能、位能之和,因此,從數(shù)值上來說,單位體積風流的機械能E等于靜壓、動壓和位壓之和,或等于全壓和位壓之和,即E=pi+hvi+hZ或E=pti+hZ2.單位體積風流的機械能15第二節(jié)風流流動基本方程包括風流流動的連續(xù)性方程和能量方程。本節(jié)主要介紹工業(yè)通風中空氣流動的壓力和能量變化規(guī)律,導出風道風流流動的連續(xù)性方程和能量方程。一、風流流動連續(xù)性方程風流在風道中的流動可以看作是穩(wěn)定流(流動參數(shù)不隨時間變化的流動)。質(zhì)量守恒定律當空氣從風道的1斷面流向2斷面,且做定常流動時(即在流動過程中不漏風又無補給),則兩個過流斷面的空氣質(zhì)量流量相等,即

ρ11S1=ρ22S2

第二節(jié)風流流動基本方程包括風流流動的連續(xù)性方程和能量16任一過流斷面的質(zhì)量流量為Mi(kg/s),則Mi=const這就是空氣流動的連續(xù)性方程,適用于可壓縮和不可壓縮流體。(1)可壓縮流體當S1=S2時,空氣的密度與其流速成反比。(2)不可壓縮流體(密度為常數(shù))其通過任一斷面的體積流量Q(m3/s)相等,即Q=iSi=const風道斷面上風流的平均流速與過流斷面的面積成反比。任一過流斷面的質(zhì)量流量為Mi(kg/s),則17二、風流流動能量方程風流在圖2-2-1所示的風道中由1斷面流至2斷面,其間無其他動力源。設1kg空氣克服流動阻力消耗的能量為LR(J/kg),周圍介質(zhì)傳遞給空氣的熱量為q(J/kg);設1、2斷面的參數(shù)分別為風流的絕對靜壓p1、p2(Pa),風流的平均流速1、2(m/s);風流的內(nèi)能u1、u2(J/kg);風流的密度ρ1、ρ2(kg/m3);距基準面的高度Z1、Z2(m)。圖2-2-1傾斜風道示意圖0021Z1Z2二、風流流動能量方程圖2-2-1傾斜風道示意圖0021Z18在1斷面下,1kg空氣具有的能量為到達2斷面時的能量為根據(jù)能量守恒定律,式中qR——風流克服通風阻力消耗的能量后所轉(zhuǎn)化的熱能,J/kg。在1斷面下,1kg空氣具有的能量為19根據(jù)熱力學第一定律,傳給空氣的熱量(qR+q),一部分用于增加空氣的內(nèi)能,一部分使空氣膨脹對外做功,即式中,v——空氣的比體積,m3/kg。又因為:將上兩式代入前面的公式,并整理可得,J/kg此即單位質(zhì)量可壓縮空氣在無其他動力源的風道中流動時能量方程的一般形式。根據(jù)熱力學第一定律,傳給空氣的熱量(qR+q),一部分用20進一步可求得:,J/kg此即單位質(zhì)量可壓縮空氣在無其他動力源的風道中流動時的能量方程。同理,如有其他動力源并產(chǎn)生風壓Lt,則單位質(zhì)量可壓縮空氣能量方程為:,J/kg進一步可求得:21設1m3空氣流動過程中的能量損失為hR(Pa),則由體積和質(zhì)量的關系,其值為1kg空氣流動過程中的能量損失(LR)乘以按流動過程狀態(tài)考慮計算的空氣密度ρm,即hR=LRρm將上式代入前面的式子,可得,J/m3。單位體積可壓縮空氣的能量方程(無其他動力源),J/m3。單位體積可壓縮空氣的能量方程(有其他動力源)設1m3空氣流動過程中的能量損失為hR(Pa),則由體積22式中,p1-p2——靜壓差;gρm(Z1-Z2)或——為1、2斷面的位壓差;——是1、2斷面的速壓差。上式的物理意義為:1m3空氣在流動過程中的能量損失等于兩斷面間的機械能差。式中,p1-p2——靜壓差;23三、使用單位體積流體能量方程的注意事項1.由于風道斷面上風速分布的不均勻性和測量誤差,從嚴格意義上講,用實際測得的斷面平均風速計算出來的斷面總動能和斷面實際總動能是不等的。實際測得的斷面平均風速計算出來的斷面總動能應乘以動能系數(shù)加以修正。

動能系數(shù)Kv是斷面實際總動能與用實際測得的斷面平均風速計算出來的總動能的比值,計算式為:式中,vl為斷面S上微小面積dS的風速。Kv值一般為1.02~1.1。在實際工業(yè)通風應用中,可取Kv=1。三、使用單位體積流體能量方程的注意事項242.在工業(yè)通風中,一般其動能差較小,式中ρm可分別用各自斷面上的密度來代替,以計算其動能差。3.風流流動必須是穩(wěn)定流,即斷面上的參數(shù)不隨時間的變化而變化,所研究的始、末斷面要選在緩變流場上。4.風流總是從總能量(機械能)大的地方流向總能量小的地方。在判斷風流方向時,應用始、末兩斷面上的總能量來進行。5.在始、末斷面有壓源時,壓源的作用方向與風流的方向一致,壓源為正,說明壓源對風流做功;反之,則為通風阻力。6.單位質(zhì)量或單位體積流量的能量方程只適用于1、2斷面間流量不變的條件,對于流動過程中有流量變化的情況,應按總能量的守恒定律列方程。2.在工業(yè)通風中,一般其動能差較小,式中ρm可分別用各自25第三節(jié)通風阻力通風阻力是當空氣沿風道運動時,由于風流的黏滯性和慣性以及風道壁面等對風流的阻滯、擾動作用而形成的,它是造成風流能量損失的原因。通風阻力包括摩擦阻力(沿程阻力)和局部阻力。一、風流流態(tài)與風道斷面風速分布1.管道風流流態(tài)

層流:在流速較低時,流體質(zhì)點互不混雜,沿著與管軸方向平行的方向做層狀運動,稱為層流(或滯流)。

紊流:在流速較大時,流體質(zhì)點的運動速度在大小和方向上都隨時發(fā)生變化,成為相互混雜的紊亂流動,稱為紊流(或湍流)。第三節(jié)通風阻力通風阻力是當空氣沿風道運動時,由于風流26空氣流動基本原理課件27管道內(nèi)流動的狀態(tài)的變化,可用無量綱雷諾數(shù)來表征式中v——氣流速度,m/s;D——管道直徑,m;

ρ——氣體密度,kg/m3;μ——氣體動力黏度,Pa·S。流體在直圓管內(nèi)流動時,流動狀態(tài)的變化:Re<2320(下臨界雷諾數(shù)):層流;2320<Re<4000:不穩(wěn)定的過渡區(qū);Re>4000(上臨界雷諾數(shù)):紊流。實際工程計算中,以Re=2300作為管道流動流態(tài)的判定準數(shù),即:Re<2300層流;Re>2300紊流。管道內(nèi)流動的狀態(tài)的變化,可用無量綱雷諾數(shù)來表征28(a)層流(b)紊流圖2-3-1風流流態(tài)與風道斷面風速分布示意圖指數(shù)曲線拋物線vcvc(a)層流(b)紊流圖2-3-1風流流態(tài)與風道斷面風速分292.風道斷面風速分布

層流流態(tài)的風流,斷面上的流速分布為拋物線形,中心最大速度v0為平均流速的2倍(圖2-3-1)。

紊流狀態(tài)下,管道內(nèi)流速的分布取決于Re的大小。距管中心r處的流速與管中心(r=0)最大流速v0的比值服從于指數(shù)定律(圖2-3-1)。式中r0——管道半徑;n——取決于Re的指數(shù):當Re=50000時,n=1/7;Re=200000時,n=1/8;Re=2000000時,n=1/10。2.風道斷面風速分布30設斷面上任一點風速為vi,則風道斷面的平均風速v為式中,S為斷面面積,即為通過斷面S上的風量Q,則Q=vS斷面上平均風速v與最大風速vmax的比值稱為風速分布系數(shù)(速度場系數(shù)),用kv表示

其值與風道粗糙度有關。風道壁面愈光滑,該值愈大,即斷面上風速分布愈均勻。設斷面上任一點風速為vi,則風道斷面的平均風速v為31二、一般管道通風摩擦阻力及計算圓形風道的摩擦阻力hr可按下式計算:,Pa式中λ——摩擦阻力無量綱系數(shù);v——風道內(nèi)空氣的平均流速,m/s;ρ——空氣的密度,kg/m3;L——風道長度,m;D——圓形風道直徑,m。如將風道長度為1m摩擦阻力稱為比摩阻,并以hb表示,則,Pa/m二、一般管道通風摩擦阻力及計算32

當量直徑:指以與非圓形風道有相等比摩阻值的圓形風道直徑。分為流速當量直徑和流量當量直徑兩種,工程中一般用流速當量直徑De計算。

流速當量直徑:假想一圓形風道中的空氣流速與矩形風道的空氣流速相等,且單位長度摩擦阻力(比摩阻)也相等,計算出的圓形風道直徑??傻昧魉佼斄恐睆紻e與斷面積S、斷面周長U的關系為:對于不同形狀的通風斷面,其周長U與斷面面積S的關系:式中,C——斷面形狀系數(shù)(梯形C=4.16,三心拱C=3.85,半圓拱C=3.90)。當量直徑:指以與非圓形風道有相等比摩阻值的圓形風道直徑。33

摩擦阻力無量綱系數(shù)λ與風道內(nèi)空氣的流動狀態(tài)和管壁的粗糙度有關。管壁的粗糙度分為絕對粗糙度K和相對粗糙度K/D。1.當流動處于層流區(qū)、層流紊流過渡區(qū)、紊流光滑區(qū),即時,λ主要與Re有關,與K/D無明顯關系;2.當流動處于紊流光滑區(qū)向紊流粗糙區(qū)過渡時,即Re介于兩者之間時,λ主要與Re、K/D均有關系;3.當流動處于阻力平方區(qū)(紊流粗糙區(qū))時,即時,λ只與K/D有關。摩擦阻力無量綱系數(shù)λ與風道內(nèi)空氣的流動狀態(tài)和管壁的粗糙度34對于流動為紊流光滑區(qū)向阻力平方區(qū)過渡時的摩擦阻力無量綱系數(shù)λ,中國于1976年編制的《全國通用通風管道計算表》采用的公式為:式中K——風道內(nèi)壁的當量絕對粗糙度,mm;D——風道直徑,mm。對于流動為紊流光滑區(qū)向阻力平方區(qū)過渡時的摩擦阻力無量綱系35在實際通風系統(tǒng)中,風道直徑很小、表面粗糙的磚、混凝土風道內(nèi)和隧道及地下風道的流動狀態(tài)屬于阻力平方區(qū);除此以外,一般的通風管道的空氣流動狀態(tài)大多屬于紊流光滑區(qū)到紊流粗糙區(qū)之間的過渡區(qū)。在設計通風管道時,為避免繁瑣的計算,可根據(jù)前面的公式制成各種表格或線算圖?!度珖ㄓ猛L管道計算表》即是一種表格形式。圖2-3-2則是根據(jù)上述公式得到的線算圖,適用于K=0.15mm薄鋼板風道。在實際通風系統(tǒng)中,風道直徑很小、表面粗糙的磚、混凝土風道36空氣流動基本原理課件37工程計算中還常用一些簡化公式,如

運用線算圖或計算表,只要已知流量、管徑、流速、阻力四個參數(shù)中的任意兩個,即可求得其余兩個參數(shù)。必須指出:各種線算圖或計算表格,都是在一些特定的條件下作出的,使用時必須注意。工程計算中還常用一些簡化公式,如38當實際條件與圖表條件相差較大時,應加以修正。修正的內(nèi)容主要有以下三類:(1)粗糙度的修正當風道內(nèi)壁的粗糙度K≠0.15mm時,可先由圖2-3-2查出hb0,再近似按下式修正:,Pa/m式中hb——實際比摩阻,Pa/m;hb0——圖上查出的比摩阻,Pa/m;Kr——風道內(nèi)壁粗糙度修正系數(shù);K——風道內(nèi)壁粗糙度,mm;v——風道內(nèi)空氣流速,m/s。當實際條件與圖表條件相差較大時,應加以修正。修正的內(nèi)容主39(2)空氣溫度和大氣壓力的修正按下式修正:,Pa/m式中,Kt——溫度修正系數(shù),即t——實際的空氣溫度,℃;KB——大氣壓力修正系數(shù),即B——實際的大氣壓力,kPa。(2)空氣溫度和大氣壓力的修正40Kt和KB也可以直接由圖2-3-3查得。從圖中可看出,在0~100℃范圍內(nèi),可近似把溫度和壓力的影響看作是直線關系。1.11.00.90.80.70.660708090100-50050100150t/℃B/kPaKBKtB圖2-3-3溫度與大氣壓的修正系數(shù)Kt和KB也可以直接由圖2-3-3查得。從圖中可看出,在41【例1】已知太原市某廠一通風系統(tǒng)采用鋼板制圓形風道,風量L=1000m3/h,管內(nèi)空氣流速v=10m/s,空氣溫度t=80℃,求風管的管徑和單位長度的沿程損失。(太原市大氣壓力為91.9kPa)

解:由線算圖查得:D=200hb0=6.8Pa/m,太原市大氣壓力:B=91.9kPa由圖2-3-3查得:Kt=0.86,KB=0.92所以,hb=KtKBhb0=0.86×0.92×6.8=5.38Pa/m【例1】已知太原市某廠一通風系統(tǒng)采用鋼板制圓形風道,風量42【例2】有一鋼板制矩形風道,K=0.15mm,斷面尺寸為500×250mm,流量為L=2700m3/h,空氣溫度為t=50℃,求單位長度摩擦阻力損失。解:矩形風管內(nèi)空氣流速=m/s流速當量直徑==m由=6m/s,=330mm,查圖2-3-2得:hb0=1.2Pa/m由圖2-3-3查得:t=50℃時,Kt=0.92所以hb=Kthb0=0.92×1.2=1.1Pa/m【例2】有一鋼板制矩形風道,K=0.15mm,斷面尺寸43(3)密度和黏度的修正

,Pa/m式中ρ——實際的空氣密度,kg/m3;v——實際的空氣運動黏度,m2/s?!纠?】有一表面光滑的磚砌風道(K=3mm),斷面尺寸為500×400mm,流量為L=1m3/S(3600m3/h),求單位長度摩擦阻力。(3)密度和黏度的修正44三、阻力平方區(qū)通風風道摩擦阻力及計算對于紊流粗糙區(qū)(阻力平方區(qū))的摩擦阻力無量綱系數(shù)λ一般采用以下公式或三、阻力平方區(qū)通風風道摩擦阻力及計算45在實際通風系統(tǒng)中,紊流粗糙區(qū)的風道如為非圓形,在前面計算圓形風道摩擦阻力hr的式子中,用當量直徑De代替D,則得到阻力平方區(qū)風道的摩擦阻力hr計算式:因此,對于幾何尺寸和風道壁面已定型的紊流粗糙區(qū)通風風道,λ之與K/D有關,可視為定值,在標準狀態(tài)下空氣密度為1.2kg/m3,故令,摩擦阻力系數(shù),kg/m3或Ns2/m4。在實際通風系統(tǒng)中,紊流粗糙區(qū)的風道如為非圓形,在前面計算46前人通過大量實驗和實測所得的、在標準狀態(tài)(密度為1.2kg/m3)條件下的各類風道的摩擦阻力系數(shù),即標準值α0見附錄10。當風道中空氣密度ρ不等于1.2kg/m3時,可按下式修正:將α代入摩擦阻力計算公式,可得若通過風道的風量為Q(m3/s)時,則對于已定型的風道,L、S、U等為已知,故令,風道的摩擦風阻,kg/m7或Ns2/m8

前人通過大量實驗和實測所得的、在標準狀態(tài)(密度為1.2k47在正常條件下當某一風道中的空氣密度一般變化不大時,可將Rr看作是反映風道幾何特征的參數(shù)。代入摩擦阻力計算公式,則有,Pa此式就是紊流粗糙區(qū)(阻力平方區(qū))下的摩擦阻力定律。即當摩擦風阻一定時,摩擦阻力與風量的平方成正比。在正常條件下當某一風道中的空氣密度一般變化不大時,可將R48

例某設計地下風道為梯形斷面S=8m2,L=1000m,采用工字鋼棚支護,支架截面高度d0=14cm,縱口徑Δ=5,計劃通過風量Q=1200m3/min。預計風道中空氣密度ρ=1.25kg/m3,求該段風道的通風阻力。

解:根據(jù)所給的d0、Δ、Q值,由附錄10查得α0=284.2×10-4×0.88=0.025Ns2/m4則風道實際摩擦阻力系數(shù)Ns2/m4風道摩擦風阻Ns2/m8風道摩擦阻力Pa例某設計地下風道為梯形斷面S=8m2,L=1000m,49四、局部阻力及其計算由于風道斷面、方向變化以及分岔或匯合等原因,使均勻流動在局部地區(qū)受到影響而破壞,從而引起風流速度場分布變化和產(chǎn)生渦流等,造成風流的能量損失,這種阻力稱為局部阻力。1.局部阻力的成因四、局部阻力及其計算502.局部阻力及其計算局部阻力hl一般用動壓的倍數(shù)來表示式中,ξ——局部阻力系數(shù),無量綱,通過實驗確定。若通過風道的風量為Q(m3/s)時,則上式變?yōu)椋捍罅繉嶒炞C明,ξ只取決于局部構件的形狀。令,局部風阻代入上式,有此即紊流流動下的局部阻力定律。2.局部阻力及其計算51空氣流動基本原理課件52五、減少通風阻力的措施h=hr+hl1.減少通風摩擦阻力措施(1)減小相對粗糙度;(2)保證有足夠大的風道斷面;(3)選用斷面周長較小的風道;(4)減少風道長度;(5)避免風道內(nèi)風量過于集中。五、減少通風阻力的措施532.減少局部通風阻力措施(1)盡量避免風道斷面的突然變化2.減少局部通風阻力措施54(2)風流交叉或匯合處連接合理(2)風流交叉或匯合處連接合理55(3)盡量避免風流急轉(zhuǎn)彎(3)盡量避免風流急轉(zhuǎn)彎56(4)降低出口流速(4)降低出口流速57(5)風道與風機的連接應當合理保證氣流在進出風機時均勻分布,避免發(fā)生流向和流速的突然變化,以減小阻力(和噪聲)。(5)風道與風機的連接應當合理58第四節(jié)通風網(wǎng)絡中風流的基本定律

通風網(wǎng)絡:指若干風流按照各自的風流方向順序相連而成的網(wǎng)狀線路。包括:風量平衡定律、風壓平衡定律和通風阻力定律。一、風量平衡定律節(jié)點:兩條風路或兩條以上風路的交點。分支:匯合處每條支風路?;芈罚河蓛蓷l或兩條以上首尾相連形成的閉合線路。根據(jù)質(zhì)量守恒定律,在穩(wěn)態(tài)通風條件下,流入與流出某節(jié)點的各分支的質(zhì)量流量的代數(shù)和為零,即

ΣMi=0第四節(jié)通風網(wǎng)絡中風流的基本定律通風網(wǎng)絡:指若干風流按59在不考慮風流密度變化的情況下,取流入的風量為正,流出的風量為負,則流入與流出某節(jié)點或回路的各分支的體積流量(風量)的代數(shù)和為零,即

ΣQi=0156324145321278435618234567(a)(b)圖2-4-1風流匯合及回路示意圖在不考慮風流密度變化的情況下,取流入的風量為正,流出的風60如圖2-4-1(a)所示,當不考慮風流密度變化時,圖中節(jié)點4處的風量平衡方程為Q1-4+Q2-4+Q3-4-Q4-5-Q4-6=0對于圖2-4-1(b)所示閉合回路的情況,同樣有Q1-2+Q3-4=Q5-6+Q7-8或者Q1-2+Q3-4-Q5-6-Q7-8=0如圖2-4-1(a)所示,當不考慮風流密度變化時,圖中節(jié)61二、風壓平衡定律若任何一回路中沒有附加動力,根據(jù)能量平衡定律,則不同方向的風流的風壓或通風阻力必然平衡或相等。對于圖2-4-1(b),可得h2-4+h4-5+h5-7=h2-7取順時針方向的風壓為正,逆時針方向的風壓為負,則h2-4+h4-5+h5-7-h2-7=0

對于任何一回路,則有式中,hi為第i段分支的風壓或阻力。二、風壓平衡定律62

風壓平衡定律:沒有附加動力回路中,不同方向的風流,其風壓或阻力代數(shù)和等于零。若回路中有附加動力,則其風壓或阻力代數(shù)和等于附加動力產(chǎn)生風壓的代數(shù)和。即式中,HJ為附加動力產(chǎn)生風壓的代數(shù)和。風壓平衡定律:沒有附加動力回路中,不同方向的風流,其風壓63三、通風阻力定律1.阻力平方區(qū)流動的摩擦阻力定律:風流流動處于紊流粗糙區(qū)時,如摩擦風阻一定,摩擦阻力與風量的平方成正比。hr=RrQ22.紊流流動局部阻力定律:紊流流動下,如局部風阻一定,局部阻力與風量的平方成正比。hl=RlQ23.將上兩式相加,則得出阻力平方區(qū)流動總阻力定律。令h=hr+hl為某通風系統(tǒng)分支的通風總阻力;R=Rr+Rl為某通風系統(tǒng)的通風總風阻,則有:h=RQ2此即紊流粗糙區(qū)流動總阻力定律。三、通風阻力定律64第五節(jié)簡單通風網(wǎng)路特性一、通風網(wǎng)路基本形式1.串聯(lián)風路由兩條或兩條以上分支彼此首尾相連,中間沒有風流分匯點的線路。2.并聯(lián)風路由兩條或兩條以上具有相同始節(jié)點和末節(jié)點的分支所組成的通風網(wǎng)路。3.角聯(lián)風路內(nèi)部存在角聯(lián)分支的通風網(wǎng)路。

角聯(lián)分支:位于通風網(wǎng)路的任意兩條有向通路之間、且不與兩通路的公共節(jié)點相連的分支。簡單角聯(lián)風路;復雜角聯(lián)風路。第五節(jié)簡單通風網(wǎng)路特性一、通風網(wǎng)路基本形式65空氣流動基本原理課件664.復雜風路以上三種均為簡單風路,至少包含以上兩種或以上簡單風路的通風網(wǎng)路稱為復雜風路。二、串聯(lián)風路特性

1.總風量等于各分支的風量即:M1=M2=M3=…=Mn當各分支的空氣密度相等時,或?qū)⑺酗L量換算為同一標準狀態(tài)的風量后,Q1=Q2=Q3=…=Qn

2.如系統(tǒng)中無位能差和附加通風動力,則總風壓(阻力)等于各分支風壓(阻力)之和。hs=h1+h2+…+hn=4.復雜風路673.阻力平方區(qū)流動的總風阻等于各分支風阻之和。即繪制阻力平方區(qū)流動的串聯(lián)風路等效阻力特性曲線,方法如下圖:3.阻力平方區(qū)流動的總風阻等于各分支風阻之和。68“風量相等,阻力疊加”串聯(lián)風路等效阻力特性曲線“風量相等,阻力疊加”串聯(lián)風路等效阻力特性曲線69三、并聯(lián)風路特性1.總風量等于各分支的風量之和即

當各分支的空氣密度相等時,或?qū)⑺酗L量換算為同一標準狀態(tài)的風量后,2.如系統(tǒng)中無位能差和附加通風動力,總風壓等于各分支風壓Q1=Q2=Q3=…=Qn注意:當各分支的位能差不相等,或分支中存在風機等通風動力時,并聯(lián)分支的阻力并不相等。三、并聯(lián)風路特性703.阻力平方區(qū)流動并聯(lián)風路總風阻與各分支風阻的關系即4.并聯(lián)風路的風量分配若已知并聯(lián)風路的總風量,在不考慮其他通風動力及風流密度變化時,可由下式計算出分支i的風量即分支風量取決于總風阻與該分支風阻之比。3.阻力平方區(qū)流動并聯(lián)風路總風阻與各分支風阻的關系71并聯(lián)風路等效阻力特性曲線“阻力相等,風量疊加”并聯(lián)風路等效阻力特性曲線72四、阻力平方區(qū)流動角聯(lián)風路特性在角聯(lián)風路中,角聯(lián)分支的風向取決于其始末節(jié)點間的壓能差。通過改變角聯(lián)分支兩側(cè)的邊緣分支的風阻,來改變角聯(lián)分支的風向。對于圖2-5-1(C),推導出如下角聯(lián)分支風流方向判別式

四、阻力平方區(qū)流動角聯(lián)風路特性73由該判別式可以看出,簡單角聯(lián)風路中角聯(lián)分支的風向完全取決于邊緣風路的風阻比,而與角聯(lián)分支本身的風阻無關。角聯(lián)分支一方面具有容易調(diào)節(jié)風向的優(yōu)點,另一方面又有出現(xiàn)風流不穩(wěn)定的可能性。由該判別式可以看出,簡單角聯(lián)風路中角聯(lián)分支的風向完全取決74第六節(jié)自然通風及火災煙氣流動原理

自然通風:由有限空間內(nèi)外空氣的密度差、大氣運動、大氣壓力差等自然因素引起有限空間內(nèi)外空氣能量差,促使有限空間的氣體流動并與大氣交換的現(xiàn)象。

自然通風動力(自然風壓):促使有限空間內(nèi)氣體流動的能量差。自然通風的應用:(1)單層工業(yè)廠房(2)多層或高層工業(yè)建筑中的熱車間(3)特種(殊)建筑物、構筑物及容器(4)各類建筑物中的防排煙系統(tǒng)第六節(jié)自然通風及火災煙氣流動原理自然通風:由有限空間75一、自然通風的產(chǎn)生例1:煙囪內(nèi)外密度差形成(煙囪效應)例2:工業(yè)廠房密度差形成一、自然通風的產(chǎn)生76例3:礦井密度差形成的自然通風例3:礦井密度差形成的自然通風77例4:大氣運動形成的自然通風例4:大氣運動形成的自然通風78二、自然風壓的計算1.密度差形成的自然風壓計算根據(jù)自然風壓定義,圖2-6-2所示系統(tǒng)的自然風壓HN可用下式計算式中Z——與大氣溫度或密度不等的有限空間高度,m;g——重力加速度,m/s2;ρ1、ρ2——分別為圖2-6-2中0-1-2和5-4-3空間的dZ段空氣密度,kg/m3。分別以空氣密度平均值ρm1、ρm2代替ρ1、ρ2后,簡化可得:

二、自然風壓的計算792.大氣運動(風壓)形成的自然風壓計算風向一定時,建筑物外表面上某一點的風壓大小和室外氣流的動壓成正比,HN可用下式表示式中A——空氣動力系數(shù);(為正,該點風壓為正)

vw——室外空氣流速,m/s;

ρm——室外空氣密度,kg/m3。穿堂風3.密度差與大氣運動(風壓)合成的自然風壓計算2.大氣運動(風壓)形成的自然風壓計算80三、自然風壓的影響因素1.密度差形成的自然風壓的影響因素可用下式來表示

(1)溫度差影響氣溫差的主要因素是大氣氣溫和風流與有限空間內(nèi)的熱交換。

(2)空氣成分和濕度

(3)與大氣溫度或密度不等的有限空間高度(4)大氣壓力三、自然風壓的影響因素812.大氣運動(風壓)形成自然風壓的影響因素

(1)室外空氣風速

(2)室外溫度T、大氣壓p和相對濕度φ

(3)建筑物形狀、風向在實際通風設計中,自然通風僅以密度差形成自然風壓作用計算。2.大氣運動(風壓)形成自然風壓的影響因素82四、火災煙氣流動基本原理1.火災煙氣的成分和危害性燃燒分為兩個階段:熱分解過程和燃燒過程。

火災煙氣:指火災時各種物質(zhì)在熱分解和燃燒作用下生成的產(chǎn)物與剩余空氣的混合物,是懸浮的固態(tài)粒子、液態(tài)粒子和氣體的混合物。煙氣的危險性:(1)毒害性(2)遮光作用(3)高溫危害四、火災煙氣流動基本原理832.促使地面建筑物煙氣流動的主要因素(1)煙囪效應(2)氣體熱膨脹(3)大氣運動風力(4)通風空調(diào)系統(tǒng)2.促使地面建筑物煙氣流動的主要因素84第七節(jié)風道通風壓力(能量)分布及分析一、水平風道通風壓力(能量)分布及分析通風機-水平風道通風系統(tǒng)如圖2-7-1所示,以縱坐標為壓力(相對壓力或絕對壓力),橫坐標為風流流程,作出壓力(能量)分布線。

第七節(jié)風道通風壓力(能量)分布及分析一、水平風道通風壓力85空氣流動基本原理課件86從圖中可以看出:(1)由于風道水平,各斷面間無位能差,任意兩斷面間的通風阻力等于兩斷面的全壓損失(全壓差)(5-6段除外)。(2)絕對全壓(相對全壓)沿程逐漸減??;絕對靜壓(相對靜壓)沿程分布隨動壓的大小變化而變化。在全壓一定的條件下,風流的靜壓和動壓可以相互轉(zhuǎn)化,故靜壓坡度線是沿程起伏變化的。(3)風機的全壓Ht等于風機進、出口的全壓差,或等于風道的總阻力及出口動壓損失之和。Ht=pt5–pt6Ht=h0-12+hv12即通風機全壓是用以克服風道阻力和出口動能損失。從圖中可以看出:87將通風機用于克服風道阻力的那一部分能量叫通風機的靜壓Hs,則有Hs=h0-12=Ht-hv12表明Hs一定,出口動壓越小,所需通風機的全壓也越小。(4)風機吸入段的全壓和靜壓均為負值,在風機入口處負壓最大;風機壓出段的全壓均是正值,在風機出口處全壓最大。而壓出段的靜壓則不一定。(5)各并聯(lián)分支的阻力總是相等。將通風機用于克服風道阻力的那一部分能量叫通風機的靜壓Hs88二、包含非水平風道通風壓力(能量)分布及分析圖2-7-2為簡化的包含非水平風道的地下通風系統(tǒng)。二、包含非水平風道通風壓力(能量)分布及分析891.風流壓力(能量)分布線的繪制設若干測點,即1、2、3、4點,測出各點的絕對靜壓、風速、溫度、濕度、標高等參數(shù);然后以最低水平2-3為基準面,計算出各斷面的總壓能;再選擇坐標系和適當?shù)谋壤詨耗転榭v坐標,風流流程為橫坐標,把各斷面的靜壓、動壓和位能描在圖2-7-3的坐標系中,即得1、2、3、4斷面的總能量,分別用a、b、c、d點表示,以a1、b1、c1、d1分別表示各斷面的全壓,其中b、c和b1、c1重合;a2、b2、c2、d2點分別表示各斷面的靜壓;最后在壓力(縱坐標)-風流流程(橫坐標)坐標圖上描出各測點,將同名參數(shù)點用折線連接起來,即得1-2-3-4流程上的壓力(能量)分布線,如圖2-7-3所示。1.風流壓力(能量)分布線的繪制90空氣流動基本原理課件912.包含非水平風道風流壓力(能量)分布分析(1)全能量沿程逐漸下降,通風阻力等于斷面上全能量的下降值;全能量坡度差的坡度反映了流動路線上的通風阻力分布狀況。(2)絕對全壓和絕對靜壓坡度線的變化與全能量坡度線的變化不同,其坡度線變化有起伏。(3)位能差(Ep01—Ep04)是自然風壓(HN),自然風壓和通風機全壓共同克服風道通風阻力和出口動能損失。2.包含非水平風道風流壓力(能量)分布分析92第八節(jié)局部通風進出口氣流運動規(guī)律

與均勻送風原理一、吸入口氣流運動規(guī)律第八節(jié)局部通風進出口氣流運動規(guī)律

與均勻送風原理一、吸入93吸氣口附近形成負壓位于自由空間的點匯吸氣口【圖2-8-1(a)】的吸氣量Q為

式中,v1、v2——分別為點1和點2的空氣流速,m/s;r1、r2——分別為點1和點2至吸氣口的距離,m。若在吸氣口四周加上擋板【圖2-8-1(b)】,吸氣氣流受到限制,吸氣量為吸氣口附近形成負壓94由上式可以看出,點匯吸氣口外某一點的空氣流速與該點至吸氣口距離的平方成反比,且隨吸氣口吸氣范圍的減小而增大。圖2-8-2為通過實驗求得四周無法蘭邊和四周有法蘭邊的圓形吸氣口的速度分布圖。由上式可以看出,點匯吸氣口外某一點的空氣流速與該點至吸氣95實驗結(jié)果也可用式(2-8-4)和式(2-8-5)表示:對于四周無法蘭邊的圓形吸氣口,對于四周有法蘭邊的圓形吸氣口,式中,v0——吸氣口的平均流速,m/s;vx——控制點上必需的氣流速度即控制風速,m/s;x——控制點至吸氣口的距離,m;F——吸氣口面積,m2。(2-8-4)(2-8-5)實驗結(jié)果也可用式(2-8-4)和式(2-8-5)表示:(96對于寬長比不小于1:3的矩形吸氣口,上兩式也適用。但上兩式僅適用于x≤1.5d的場合,當x>1.5d時,實際的速度衰減要比計算值大。二、吹出口氣流運動規(guī)律空氣從吹氣口吹出,在空間形成一股氣流稱為吹出氣流或射流。根據(jù)空間界壁對射流的約束條件,射流又分為自由射流(吹向無限空間)和受限射流(吹向有限空間);按射流內(nèi)部溫度的變化情況,可分為等溫射流和非等溫射流。對于寬長比不小于1:3的矩形吸氣口,上兩式也適用。971.自由淹沒射流圖2-8-3所示為自由淹沒射流的流動圖,1.自由淹沒射流98具有如下特點:(1)出現(xiàn)并發(fā)展邊界層(2)全流場或局部流場氣流參數(shù)分布具有自模性(3)與吸氣口比,軸向速度衰減慢,流場中橫向分速可被忽略。

等溫自由紊流(圓)射流的軸心速度vx、橫斷面直徑dx、起始段長度ln的計算公式為

(2-8-6)具有如下特點:(2-8-6)992.附壁受限射流當射流邊界的擴展受到房間邊壁的影響時,就稱為受限射流(或有限空間射流)。當射流斷面面積達到有限空間橫斷面面積的1/5時,射流受限,成為有限空間射流。2.附壁受限射流100若以附壁射流為基礎,將無量綱距離定為或式中,Sn是垂直于射流的空間斷面面積。當時,射流的擴散規(guī)律與自由射流相同,并稱的斷面為第一臨界斷面。當時,射流擴散受限,射流斷面與流量增加變緩,動量不再守恒,且到時射流流量最大,射流斷面在稍后處亦達最大,稱的斷面為第二臨界斷面。(2-8-7)若以附壁射流為基礎,將無量綱距離定為(2-8-7)101三、均勻送風原理

均勻送風:指通風系統(tǒng)的風道把等量的空氣沿風道側(cè)壁的成排孔口或短管均勻送出。靜壓差產(chǎn)生的流速為空氣在風道內(nèi)的流速為式中pj——風道內(nèi)空氣的靜壓;pd——風道內(nèi)空氣的動壓。設孔口實際流速為v,孔口出流與風道軸線間的夾角為α,則它們與孔口面積f0、孔口在氣流垂直方向上的投影面積f、靜壓差產(chǎn)生的流速vj有如下關系(2-8-8)(2-8-9)(2-8-10)三、均勻送風原理(2-8-8)(2-8-9)(2-8-10)102空氣流動基本原理課件103則,孔口出流流量為從上式可以看出,要使各側(cè)孔的送風量保持相等,必須保證各側(cè)孔相等,下面為實現(xiàn)的途徑:1.保持和均相等(1)保持各側(cè)孔流量系數(shù)相等,出流角α盡量大(2)保持各側(cè)孔相等,三種實現(xiàn)途徑a.各側(cè)孔孔口面積f0相等,風道斷面變化保持各側(cè)孔靜壓pj相等。(2-8-11)則,孔口出流流量為(2-8-11)104空氣流動基本原理課件105b.風道斷面相等,各側(cè)孔孔口面積f0變化使得相等c.同時變化風道斷面、各側(cè)孔孔口面積f0,使得相等2.變化,也隨之變化b.風道斷面相等,各側(cè)孔孔口面積f0變化使得106【例6.4】如下圖所示的薄鋼板圓錐形側(cè)孔均勻送風道??偹惋L量為7200m3/h,開設6個等面積的側(cè)孔,孔間距為1.5m,試確定側(cè)孔面積、各斷面直徑及風道總阻力損失。均勻送風管道【例6.4】如下圖所示的薄鋼板圓錐形側(cè)孔均勻送風道??偹惋L107解1.計算靜壓速度和側(cè)孔面積設側(cè)孔平均流速=4.5m/s,孔口流量系數(shù)=0.6,則側(cè)孔靜壓流速=m/s側(cè)孔面積m2

取側(cè)孔的尺寸高×寬:250×300mm解1082.計算斷面1處流速和斷面尺寸由≥60°,即≥1.73的原則確定斷面1處流速=m/s取=4m/s,斷面1動壓=Pa斷面1直徑m2.計算斷面1處流速和斷面尺寸1093.計算管段1~2的阻力損失由風量L=6000m3/h,近似以=800mm作為平均直徑,查線算圖得=0.14Pa/m沿程損失Pa空氣流過側(cè)孔直通部分的局部阻力系數(shù)

局部損失管段1~2總損失=+=0.21+0.096=0.306Pa=0.353.計算管段1~2的阻力損失=0.351104.計算斷面2處流速和斷面尺寸根據(jù)兩側(cè)孔間的動壓降等于兩側(cè)孔間的阻力可得Pa斷面2流速=m/s斷面2直徑

m4.計算斷面2處流速和斷面尺寸m1115.計算管段2~3的阻力由風量L=4800m3/h,=730mm查附錄6.1得=0.14Pa/m沿程損失==0.14×1.5=0.21Pa局部損失=0.35×Pa總損失=+=0.21+0.13=0.34Pa6.按上述步驟計算其余各斷面尺寸,計算結(jié)果見表6.6。5.計算管段2~3的阻力112空氣流動基本原理課件1137.計算風道總阻力因風道最末端的全壓為零,因此風道總阻力應為斷面1處具有的全壓,即

Pa7.計算風道總阻力Pa114第九節(jié)置換通風原理與特征一、置換通風的原理擠壓的原理第九節(jié)置換通風原理與特征一、置換通風的原理115空氣流動基本原理課件116二、置換通風的特性以浮力控制為動力。具有氣流擴散浮力提升、小溫差、低風速、送風紊流小、溫度/濃度分層、空氣品質(zhì)接近于送風、送風區(qū)為層流區(qū)的特點。1.置換通風房間內(nèi)的自然對流置換通風的主導氣流是依靠熱源產(chǎn)生的上升氣流及煙羽來驅(qū)動房間內(nèi)的氣流流向。二、置換通風的特性1172.置換通風房間的熱力分層置換通風是利用空氣密度差在室內(nèi)形成的由下而上的通風氣流。3.置換通風房間室內(nèi)空氣溫度、速度與有害物濃度的分布

溫度:底部溫度低、上部溫度高。

風速:出口約為0.25m/s,隨著高度增加風速越來越低。

有害物濃度:上部高,下部低。在1.1m以下的工作區(qū)其有害物濃度遠低于上部的有害物濃度。2.置換通風房間的熱力分層118三、置換通風的應用1.落地式置換通風末端裝置在工業(yè)廠房的應用三、置換通風的應用1192.落地式置換通風在會議廳的應用3.架空式置換通風器在辦公室的應用2.落地式置換通風在會議廳的應用1201.風道直徑250mm,長15m,風道內(nèi)空氣溫度40℃。求維持層流運動的最大流速和相應的摩擦阻力。(計算)2.有一鋼板制矩形風道,其斷面尺寸為寬300mm、長600mm,長10m,風道內(nèi)流過的風量L=4000m3/h。求風道的總摩擦阻力。(查圖或表)3.已知某梯形風道摩擦阻力系數(shù)α=0.0177N·s2/m4,風道長L=200m,凈斷面積S=5m,通過風量Q=720m3/min,求摩擦風阻與摩擦阻力。?思考題1.風道直徑250mm,長15m,風道內(nèi)空氣溫度40℃。1214.蘭州市某廠有一通風系統(tǒng),風管用薄鋼板制作。已知風量L=1500m3/h(0.417m3/s),管內(nèi)空氣流速v=15m/s,空氣溫度t=100℃,求風管的管徑和單位長度的沿程損失。5.一矩形薄鋼板風管(K=0.15mm)的斷面尺寸為400mm×200mm,管長8m,風量為0.88m3/s,在t=20℃的工況下運行,試分別用流速當量直徑和流量當量直徑計算其摩擦阻力。如果采用礦渣混凝土板(K=1.5mm)制作風管,再求該風管的摩擦阻力。如果空氣在冬季加熱至50℃,夏季冷卻至10℃,該矩形薄鋼板風管的摩擦阻力有何變化?4.蘭州市某廠有一通風系統(tǒng),風管用薄鋼板制作。已知風量L1226.一圓形通風管道系統(tǒng)的局部,大斷面直徑為600,小斷面直徑為400m,今在斷面變化處測得大小斷面之間的靜壓差為550Pa,大斷面的平均動壓為100Pa,空氣密度為1.2kg/m,求該處的局部阻力系數(shù)。6.一圓形通風管道系統(tǒng)的局部,大斷面直徑為600,小斷面直徑123Thanks!Thanks!124第二章空氣流動基本原理主要研究空氣流動過程中宏觀力學參數(shù)的變化規(guī)律以及能量的轉(zhuǎn)換關系。內(nèi)容:風流壓力、風流流動方程、通風阻力、通風網(wǎng)絡中風流的基本定律、簡單通風網(wǎng)絡特性、自然通風原理、風道壓力分布、局部通風進出口風流運動規(guī)律、置換通風原理等內(nèi)容。第二章空氣流動基本原理主要研究空氣流動過程中宏觀125本章學習目標1.掌握風道流動的空氣靜壓、位壓、動壓、全壓的概念及其相應關系2.掌握空氣流動的連續(xù)性方程和能量方程3.掌握紊流狀態(tài)下的摩擦阻力、局部阻力的計算4.了解風流流態(tài)與風道斷面的風速分布5.掌握通風網(wǎng)絡中風流的基本定律和簡單通風網(wǎng)路特性6.掌握自然風壓的計算方法7.了解風道通風壓力分布8.了解吸入口與吹出口氣流運動規(guī)律9.掌握均勻送風與置換通風方式的原理本章學習目標1.掌握風道流動的空氣靜壓、位壓、動壓、全壓的概126第一節(jié)風流壓力風流壓力:單位體積空氣所具有的能夠?qū)ν庾龉Φ臋C械能。一、靜壓1.概念由分子熱運動產(chǎn)生的分子動能的一部分轉(zhuǎn)化的能夠?qū)ν庾龉Φ臋C械能叫靜壓能,用Ep表示(J/m3)。當空氣分子撞擊到器壁上時就有了力的效應,這種單位面積上力的效應稱為靜壓力,簡稱靜壓,用p表示(N/m2,即Pa)工業(yè)通風中,靜壓即單位面積上受到的垂直作用力。第一節(jié)風流壓力風流壓力:單位體積空氣所具有的能夠?qū)ν?272.特點(1)無論靜止的空氣還是流動的空氣都具有靜壓力。(2)風流中任一點的靜壓各向同值,且垂直作用面。(3)風流靜壓的大小(可用儀表測量)反映了單位體積風流所具有的能夠?qū)ν庾龉Φ撵o壓能的多少。3.表示方法(1)絕對靜壓:以真空為測算零點(比較基準)而測得的壓力,用p表示。(2)相對靜壓:以當?shù)禺敃r同標高的大氣壓力為測算基準(零點)而測得的壓力,即表壓力,用h表示。2.特點128P0BAPAPPBPAPBhA(+)hB(-)真空(0)圖2-1-1絕對靜壓、相對靜壓和大氣壓之間的關系P0BAPAPPBPAPBhA(+)hB(-)真空圖2-1-129風流的絕對靜壓(p)、相對靜壓(h)和與其對應的大氣壓(p0)三者之間的關系(見圖2-1-1):h=p-p0二、動壓1.概念當空氣流動時,除位壓和靜壓外,還有空氣定向運動的動能,用Ev表示,J/m3;其單位體積風流的動能所轉(zhuǎn)化顯現(xiàn)的壓力叫動壓或稱速壓,用hv表示,單位Pa。風流的絕對靜壓(p)、相對靜壓(h)和與其對應的大氣壓(1302.計算設某點的空氣密度為ρi(kg/m3),其定向運動的流速即風速為i(m/s),則單位體積空氣所具有的動能為:

,J/m3Evi對外所呈現(xiàn)的動壓,Pa2.計算1313.特點(1)只有做定向流動的空氣才具有動壓,因此動壓具有方向性。(2)動壓總大于零。當作用面與流動方向有夾角時,其感受到的動壓值將小于動壓真值。故在測量動壓時,應使感壓孔垂直于運動方向。(3)在同一流動斷面上,由于風速分布的不均勻性,各點的風速不相等,所以其動壓值不等。(4)某斷面動壓即為該斷面平均風速計算值。3.特點132三、位壓1.概念單位體積風流對于某基準面而具有的位能,稱為位壓,用hz表示。物體在地球重力場中因地球引力的作用,由于位置的不同而具有的一種能量,叫重力位能,簡稱位能,用Ep0表示。Ep0=MgZ,J三、位壓133abPiZ122211圖2-1-2位壓計算圖abPiZ122211圖2-1-2位壓計算圖1342.計算在圖2-1-2所示的井筒中,求1-1、2-2兩斷面之間的位壓,取2-2點為基準面(2-2斷面的位能為零)。按下式計算1-1、2-2斷面間位壓:,J/m3此式是位壓的數(shù)學定義式。即兩斷面間的位壓的數(shù)值就等于兩斷面間單位面積上的空氣柱重量的數(shù)值。2.計算1353.位壓與靜壓的關系當空氣靜止時(v=0),如圖2-1-2的系統(tǒng)。由空氣靜力學可知,各斷面的機械能相等。設2-2斷面為基準面,1-1斷面總機械能E1=Ep01+p12-2斷面總機械能E2=Ep02+p2由E1=E2得:Ep01+p1=Ep02+p2由于Ep02=0(以2-2斷面為基準面),Ep01=ρ12gZ12,又得p2=Ep01+p1=ρ12gZ12+p1

此即空氣靜止時,位壓與靜壓之間的關系。3.位壓與靜壓的關系1364.位壓的特點(1)位壓是相對某一基準面具有的能量,它隨所選基準面的變化而變化。(2)位壓是一種潛在的能量,不能像靜壓那樣用儀表進行直接測量。(3)位壓和靜壓可以相互轉(zhuǎn)化,當空氣由標高高的斷面流至標高低的斷面時,位壓轉(zhuǎn)化為靜壓;反之,當空氣由標高低的斷面流至標高高的斷面時,靜壓轉(zhuǎn)化為位壓。4.位壓的特點137四、風流的全壓和機械能1.風流的全壓風流中某一點的動壓和靜壓之和稱為全壓。全壓也分為絕對全壓(pt)和相對全壓(ht)。在風流中某點i的絕對全壓均可用下式表示pti=pi+hvi式中pti——風流中i點的絕對全壓,Pa;pi——風流中i點的絕對靜壓,Pa;hvi——風流中i點的動壓,Pa。由上式可知,風流中的任一點的絕對全壓恒大于絕對靜壓;相對全壓有正負之分,與通風方式有關。四、風流的全壓和機械能1382.單位體積風流的機械能根據(jù)能量的概念,單位體積風流的機械能為單位體積風流的靜壓能、動能、位能之和,因此,從數(shù)值上來說,單位體積風流的機械能E等于靜壓、動壓和位壓之和,或等于全壓和位壓之和,即E=pi+hvi+hZ或E=pti+hZ2.單位體積風流的機械能139第二節(jié)風流流動基本方程包括風流流動的連續(xù)性方程和能量方程。本節(jié)主要介紹工業(yè)通風中空氣流動的壓力和能量變化規(guī)律,導出風道風流流動的連續(xù)性方程和能量方程。一、風流流動連續(xù)性方程風流在風道中的流動可以看作是穩(wěn)定流(流動參數(shù)不隨時間變化的流動)。質(zhì)量守恒定律當空氣從風道的1斷面流向2斷面,且做定常流動時(即在流動過程中不漏風又無補給),則兩個過流斷面的空氣質(zhì)量流量相等,即

ρ11S1=ρ22S2

第二節(jié)風流流動基本方程包括風流流動的連續(xù)性方程和能量140任一過流斷面的質(zhì)量流量為Mi(kg/s),則Mi=const這就是空氣流動的連續(xù)性方程,適用于可壓縮和不可壓縮流體。(1)可壓縮流體當S1=S2時,空氣的密度與其流速成反比。(2)不可壓縮流體(密度為常數(shù))其通過任一斷面的體積流量Q(m3/s)相等,即Q=iSi=const風道斷面上風流的平均流速與過流斷面的面積成反比。任一過流斷面的質(zhì)量流量為Mi(kg/s),則141二、風流流動能量方程風流在圖2-2-1所示的風道中由1斷面流至2斷面,其間無其他動力源。設1kg空氣克服流動阻力消耗的能量為LR(J/kg),周圍介質(zhì)傳遞給空氣的熱量為q(J/kg);設1、2斷面的參數(shù)分別為風流的絕對靜壓p1、p2(Pa),風流的平均流速1、2(m/s);風流的內(nèi)能u1、u2(J/kg);風流的密度ρ1、ρ2(kg/m3);距基準面的高度Z1、Z2(m)。圖2-2-1傾斜風道示意圖0021Z1Z2二、風流流動能量方程圖2-2-1傾斜風道示意圖0021Z142在1斷面下,1kg空氣具有的能量為到達2斷面時的能量為根據(jù)能量守恒定律,式中qR——風流克服通風阻力消耗的能量后所轉(zhuǎn)化的熱能,J/kg。在1斷面下,1kg空氣具有的能量為143根據(jù)熱力學第一定律,傳給空氣的熱量(qR+q),一部分用于增加空氣的內(nèi)能,一部分使空氣膨脹對外做功,即式中,v——空氣的比體積,m3/kg。又因為:將上兩式代入前面的公式,并整理可得,J/kg此即單位質(zhì)量可壓縮空氣在無其他動力源的風道中流動時能量方程的一般形式。根據(jù)熱力學第一定律,傳給空氣的熱量(qR+q),一部分用144進一步可求得:,J/kg此即單位質(zhì)量可壓縮空氣在無其他動力源的風道中流動時的能量方程。同理,如有其他動力源并產(chǎn)生風壓Lt,則單位質(zhì)量可壓縮空氣能量方程為:,J/kg進一步可求得:145設1m3空氣流動過程中的能量損失為hR(Pa),則由體積和質(zhì)量的關系,其值為1kg空氣流動過程中的能量損失(LR)乘以按流動過程狀態(tài)考慮計算的空氣密度ρm,即hR=LRρm將上式代入前面的式子,可得,J/m3。單位體積可壓縮空氣的能量方程(無其他動力源),J/m3。單位體積可壓縮空氣的能量方程(有其他動力源)設1m3空氣流動過程中的能量損失為hR(Pa),則由體積146式中,p1-p2——靜壓差;gρm(Z1-Z2)或——為1、2斷面的位壓差;——是1、2斷面的速壓差。上式的物理意義為:1m3空氣在流動過程中的能量損失等于兩斷面間的機械能差。式中,p1-p2——靜壓差;147三、使用單位體積流體能量方程的注意事項1.由于風道斷面上風速分布的不均勻性和測量誤差,從嚴格意義上講,用實際測得的斷面平均風速計算出來的斷面總動能和斷面實際總動能是不等的。實際測得的斷面平均風速計算出來的斷面總動能應乘以動能系數(shù)加以修正。

動能系數(shù)Kv是斷面實際總動能與用實際測得的斷面平均風速計算出來的總動能的比值,計算式為:式中,vl為斷面S上微小面積dS的風速。Kv值一般為1.02~1.1。在實際工業(yè)通風應用中,可取Kv=1。三、使用單位體積流體能量方程的注意事項1482.在工業(yè)通風中,一般

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論