![管理學財務管理第三章課件_第1頁](http://file4.renrendoc.com/view/7eb9650a2e916dbc3b46fc18888afbec/7eb9650a2e916dbc3b46fc18888afbec1.gif)
![管理學財務管理第三章課件_第2頁](http://file4.renrendoc.com/view/7eb9650a2e916dbc3b46fc18888afbec/7eb9650a2e916dbc3b46fc18888afbec2.gif)
![管理學財務管理第三章課件_第3頁](http://file4.renrendoc.com/view/7eb9650a2e916dbc3b46fc18888afbec/7eb9650a2e916dbc3b46fc18888afbec3.gif)
![管理學財務管理第三章課件_第4頁](http://file4.renrendoc.com/view/7eb9650a2e916dbc3b46fc18888afbec/7eb9650a2e916dbc3b46fc18888afbec4.gif)
![管理學財務管理第三章課件_第5頁](http://file4.renrendoc.com/view/7eb9650a2e916dbc3b46fc18888afbec/7eb9650a2e916dbc3b46fc18888afbec5.gif)
版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
Chapter3TheTimeValueofMoneyChapter3TheTimeValueofMonAfterstudyingChapter3,youshouldbeableto:Understandwhatismeantby"thetimevalueofmoney."Understandtherelationshipbetweenpresentandfuturevalue.Describehowtheinterestratecanbeusedtoadjustthevalueofcashflows–bothforwardandbackward–toasinglepointintime.Calculateboththefutureandpresentvalueof:(a)anamountinvestedtoday;(b)astreamofequalcashflows(anannuity);and(c)astreamofmixedcashflows.Distinguishbetweenan“ordinaryannuity”andan“annuitydue.”Useinterestfactortablesandunderstandhowtheyprovideashortcuttocalculatingpresentandfuturevalues.Useinterestfactortablestofindanunknowninterestrateorgrowthratewhenthenumberoftimeperiodsandfutureandpresentvaluesareknown.Buildan“amortizationschedule”foraninstallment-styleloan.AfterstudyingChapter3,youTheTimeValueofMoney
TheInterestRateSimpleInterestCompoundInterestAmortizingaLoanCompoundingMoreThanOnceperYearTheTimeValueofMoneyTheInObviously,$10,000today.YoualreadyrecognizethatthereisTIMEVALUETOMONEY!!TheInterestRateWhichwouldyouprefer–$10,000todayor$10,000in5years?Obviously,$10,000today.TheITIMEallowsyoutheopportunitytopostponeconsumptionandearnINTEREST.WhyTIME?WhyisTIMEsuchanimportantelementinyourdecision?TIMEallowsyoutheopportunitTypesofInterestCompoundInterestInterestpaid(earned)onanypreviousinterestearned,aswellasontheprincipalborrowed(lent).SimpleInterestInterestpaid(earned)ononlytheoriginalamount,orprincipal,borrowed(lent).TypesofInterestCompoundInteSimpleInterestFormulaFormula
SI=P0(i)(n)
SI: SimpleInterest
P0: Deposittoday(t=0)
i: InterestRateperPeriod n: NumberofTimePeriodsSimpleInterestFormulaFormulaSI =P0(i)(n)
=$1,000(0.07)(2) =$140SimpleInterestExampleAssumethatyoudeposit$1,000inanaccountearning7%simpleinterestfor2years.Whatistheaccumulatedinterestattheendofthe2ndyear?SI =P0(i)(n) =$1,000(
FV =P0+SI =$1,000
+$140 =
$1,140FutureValue
isthevalueatsomefuturetimeofapresentamountofmoney,oraseriesofpayments,evaluatedatagiveninterestrate.SimpleInterest(FV)WhatistheFutureValue(FV)ofthedeposit? FV =P0+SI =$1,0
ThePresentValueissimplythe $1,000youoriginallydeposited. Thatisthevaluetoday!PresentValue
isthecurrentvalueofafutureamountofmoney,oraseriesofpayments,evaluatedatagiveninterestrate.SimpleInterest(PV)WhatisthePresentValue(PV)ofthepreviousproblem? ThePresentValueissimplyWhyCompoundInterest?FutureValue(U.S.Dollars)WhyCompoundInterest?FutureV
Assumethatyoudeposit$1,000atacompoundinterestrateof7%for2years.FutureValue
SingleDeposit(Graphic)
0
1
2$1,000FV27% Assumethatyoudeposit$1,00FV1 =P0(1+i)1 =$1,000
(1.07) =$1,070CompoundInterest Youearned$70interestonyour$1,000depositoverthefirstyear. Thisisthesameamountofinterestyouwouldearnundersimpleinterest.FutureValue
SingleDeposit(Formula)FV1 =P0(1+i)1 =$1,000FV1 =P0
(1+i)1 =$1,000(1.07) =$1,070FV2 =FV1(1+i)1 =P0(1+i)(1+i)=$1,000(1.07)(1.07) =P0
(1+i)2 =$1,000(1.07)2 =$1,144.90YouearnedanEXTRA
$4.90inYear2withcompoundoversimpleinterest.FutureValue SingleDeposit(Formula)FV1 =P0(1+i)1 =$1,0
FV1 =P0(1+i)1
FV2 =P0(1+i)2GeneralFutureValueFormula:
FVn =P0(1+i)n
or FVn=P0(FVIFi,n)–SeeTableIGeneralFutureValueFormulaetc. FV1 =P0(1+i)1GeneralFuFVIFi,n
isfoundonTableIattheendofthebook.ValuationUsingTableIFVIFi,nisfoundonTableIVa
FV2 =$1,000(FVIF7%,2) =$1,000(1.145) =$1,145
[DuetoRounding]UsingFutureValueTables FV2 =$1,000(FVIF7%,2) =
JulieMillerwantstoknowhowlargeherdepositof$10,000todaywillbecomeatacompoundannualinterestrateof10%for5years.StoryProblemExample
012345$10,000FV510% JulieMillerwantstoknowhoCalculationbasedonTableI:
FV5
=$10,000
(FVIF10%,5)
=$10,000
(1.611) =$16,110 [DuetoRounding]StoryProblemSolutionCalculationbasedongeneralformula:
FVn =P0(1+i)n
FV5
=$10,000(1+0.10)5 =$16,105.10CalculationbasedonTableI: Wewillusethe“Rule-of-72”.DoubleYourMoney!!!Quick!Howlongdoesittaketodouble$5,000atacompoundrateof12%peryear(approx.)?Wewillusethe“Rule-of-72”.DApprox.YearstoDouble=72
/i%72/12%=6Years[ActualTimeis6.12Years]The“Rule-of-72”Quick!Howlongdoesittaketodouble$5,000atacompoundrateof12%peryear(approx.)?Approx.YearstoDouble=72/Assumethatyouneed$1,000
in2years.Let’sexaminetheprocesstodeterminehowmuchyouneedtodeposittodayatadiscountrateof7%compoundedannually.
0
1
2$1,0007%PV1PV0PresentValue SingleDeposit(Graphic)Assumethatyouneed$1,000in
PV0=FV2/(1+i)2 =$1,000
/(1.07)2 =FV2/(1+i)2
=$873.44
0
1
2$1,0007%PV0PresentValue
SingleDeposit(Formula)PV0=FV2/(1+i)2 =$1,
PV0
=FV1/(1+i)1
PV0=FV2/(1+i)2GeneralPresentValueFormula:
PV0 =FVn/(1+i)n
or PV0=FVn(PVIFi,n)–SeeTableIIetc.GeneralPresentValueFormula PV0=FV1/(1+i)1etc.GenPVIFi,n
isfoundonTableIIattheendofthebook.ValuationUsingTableIIPVIFi,nisfoundonTableIIV
PV2 =$1,000(PVIF7%,2) =$1,000(.873) =$873
[DuetoRounding]UsingPresentValueTables PV2 =$1,000(PVIF7%,2) =
JulieMillerwantstoknowhowlargeofadeposittomakesothatthemoneywillgrowto$10,000
in5yearsatadiscountrateof10%.
012345$10,000PV010%StoryProblemExample JulieMillerwantstoknowho
Calculationbasedongeneralformula:
PV0 =FVn/(1+i)n
PV0
=$10,000
/(1+0.10)5 =$6,209.21
CalculationbasedonTableI:
PV0
=$10,000
(PVIF10%,5)
=$10,000
(0.621) =$6,210.00
[DuetoRounding]StoryProblemSolution CalculationbasedongeneralOrdinaryAnnuity:Paymentsorreceiptsoccurattheendofeachperiod.AnnuityDue:Paymentsorreceiptsoccuratthe beginningofeachperiod.AnAnnuityrepresentsaseriesofequalpayments(orreceipts)occurringoveraspecifiednumberofequidistantperiods.TypesofAnnuitiesOrdinaryAnnuity:Paymentsor
StudentLoanPaymentsCarLoanPaymentsInsurancePremiumsMortgagePaymentsRetirementSavingsExamplesofAnnuitiesStudentLoanPaymentsExample0123
$100$100$100(OrdinaryAnnuity)EndofPeriod1EndofPeriod2TodayEqualCashFlowsEach1PeriodApartEndofPeriod3PartsofanAnnuity010123$100$100$100(AnnuityDue)BeginningofPeriod1BeginningofPeriod2TodayEqualCashFlowsEach1PeriodApartBeginningofPeriod3PartsofanAnnuity01FVAn=R(1+i)n-1+R(1+i)n-2+ ...+R(1+i)1
+R(1+i)0
RRR012nn+1FVAnR
=PeriodicCashFlowCashflowsoccurattheendoftheperiodi%...Overviewofan
OrdinaryAnnuity–FVAFVAn=R(1+i)n-1+R(1+i)n
FVA3=$1,000(1.07)2+ $1,000(1.07)1+$1,000(1.07)0
=$1,145
+
$1,070
+
$1,000
=
$3,215$1,000$1,000$1,0000123
4$3,215=FVA37%$1,070$1,145CashflowsoccurattheendoftheperiodExampleofan
OrdinaryAnnuity–FVA FVA3=$1,000(1.07)2+ Thefuturevalueofanordinaryannuitycanbeviewedasoccurringattheendofthelastcashflowperiod,whereasthefuturevalueofanannuityduecanbeviewedasoccurringatthebeginningofthelastcashflowperiod.HintonAnnuityValuationThefuturevalueofanordinar
FVAn =R(FVIFAi%,n) FVA3 =$1,000(FVIFA7%,3) =$1,000(3.215)=$3,215ValuationUsingTableIII FVAn =R(FVIFAi%,n) FVA3FVADn=R(1+i)n+R(1+i)n-1+ ...+R(1+i)2
+R(1+i)1 =FVAn(1+i)
RRRRR0123n–1
nFVADni%...OverviewViewofan
AnnuityDue–FVADCashflowsoccuratthebeginningoftheperiodFVADn=R(1+i)n+R(1+i)
FVAD3=$1,000(1.07)3+ $1,000(1.07)2+$1,000(1.07)1
=$1,225
+
$1,145
+
$1,070
=
$3,440$1,000$1,000$1,000$1,07001234$3,440=FVAD37%$1,225$1,145Exampleofan
AnnuityDue–FVADCashflowsoccuratthebeginningoftheperiod FVAD3=$1,000(1.07)3+ FVADn =R(FVIFAi%,n)(1+i) FVAD3 =$1,000(FVIFA7%,3)(1.07) =$1,000(3.215)(1.07)=$3,440ValuationUsingTableIIIFVADn =R(FVIFAi%,n)(1+i) PVAn=R/(1+i)1+R/(1+i)2 +...+R/(1+i)n
RRR012nn+1PVAnR
=PeriodicCashFlowi%...Overviewofan
OrdinaryAnnuity–PVACashflowsoccurattheendoftheperiodPVAn=R/(1+i)1+R/(1+i)2
PVA3= $1,000/(1.07)1+ $1,000/(1.07)2+ $1,000/(1.07)3
=$934.58+$873.44+$816.30 =
$2,624.32$1,000$1,000$1,00001234$2,624.32=PVA37%$934.58$873.44$816.30Exampleofan
OrdinaryAnnuity–PVACashflowsoccurattheendoftheperiod PVA3= $1,000/(1.07)1+ Thepresentvalueofanordinaryannuitycanbeviewedasoccurringatthebeginningofthefirstcashflowperiod,whereasthefuturevalueofanannuityduecanbeviewedasoccurringattheendofthefirstcashflowperiod.HintonAnnuityValuationThepresentvalueofanordina
PVAn =R(PVIFAi%,n) PVA3 =$1,000(PVIFA7%,3) =$1,000(2.624)=$2,624ValuationUsingTableIV PVAn =R(PVIFAi%,n) PVA3PVADn=R/(1+i)0+R/(1+i)1+...+R/(1+i)n–1
=PVAn(1+i)
RRRR012n–1
nPVADnR:PeriodicCashFlowi%...Overviewofan
AnnuityDue–PVADCashflowsoccuratthebeginningoftheperiodPVADn=R/(1+i)0+R/(1+iPVADn=$1,000/(1.07)0+$1,000/(1.07)1+ $1,000/(1.07)2=$2,808.02$1,000.00$1,000$1,0000123
4$2,808.02=PVADn7%$934.58$873.44Exampleofan
AnnuityDue–PVADCashflowsoccuratthebeginningoftheperiodPVADn=$1,000/(1.07)0+$1,00PVADn=R(PVIFAi%,n)(1+i) PVAD3 =$1,000(PVIFA7%,3)(1.07) =$1,000(2.624)(1.07)=$2,808ValuationUsingTableIVPVADn=R(PVIFAi%,n)(1+i1.Readproblemthoroughly2.Createatimeline3.Putcashflowsandarrowsontimeline4.DetermineifitisaPVorFVproblem5.Determineifsolutioninvolvesasingle CF,annuitystream(s),ormixedflow6.Solvetheproblem7.Checkwithfinancialcalculator(optional)StepstoSolveTimeValueofMoneyProblems1.ReadproblemthoroughlySte
JulieMillerwillreceivethesetofcashflowsbelow.WhatisthePresentValueatadiscountrateof10%.
012345
$600$600$400$400$100PV010%MixedFlowsExample JulieMillerwillreceivethe
012345
$600$600$400$400$10010%$545.45$495.87$300.53$273.21$62.09$1677.15=PV0
oftheMixedFlow012
012345
$600$600$400$400$10010%$1,041.60$573.57$62.10$1,677.27
=PV0
ofMixedFlow[UsingTables]$600(PVIFA10%,2)=$600(1.736)=$1,041.60$400(PVIFA10%,2)(PVIF10%,2)=$400(1.736)(0.826)=$573.57$100(PVIF10%,5)=$100(0.621)=$62.10012GeneralFormula:FVn =PV0(1+[i/m])mn
n: NumberofYears m: CompoundingPeriodsperYear i: AnnualInterestRate FVn,m:FVattheendofYearn
PV0: PVoftheCashFlowtodayFrequencyofCompoundingGeneralFormula:FrequencyofCJulieMillerhas$1,000toinvestfor2Yearsatanannualinterestrateof12%.Annual FV2 =1,000(1+[0.12/1])(1)(2) =1,254.40Semi FV2 =1,000(1+[0.12/2])(2)(2) =1,262.48ImpactofFrequencyJulieMillerhas$1,000toinvQrtly FV2 =1,000(1+[0.12/4])(4)(2) =1,266.77MonthlyFV2
=1,000(1+[0.12/12])(12)(2) =1,269.73Daily FV2
=1,000(1+[0.12/365])(365)(2) =1,271.20ImpactofFrequencyQrtly FV2 =1,000(1+[0.EffectiveAnnualInterestRateTheactualrateofinterestearned(paid)afteradjustingthenominalrate
forfactorssuchasthenumberofcompoundingperiodsperyear.(1+[i
/m])m
–1EffectiveAnnual
InterestRateEffectiveAnnualInterestRateBasketWonders(BW)hasa$1,000CDatthebank.Theinterestrateis6%
compoundedquarterlyfor1year.WhatistheEffectiveAnnualInterestRate(EAR)?
EAR =(1+0.06/4)4–1 =1.0614-1=0.0614or6.14%!BWsEffective
AnnualInterestRateBasketWonders(BW)hasa$1,01. Calculatethepaymentperperiod.2. DeterminetheinterestinPeriodt. (LoanBalanceatt–1)x(i%/m)3. ComputeprincipalpaymentinPeriodt. (Payment-InterestfromStep2)4. DetermineendingbalanceinPeriodt. (Balance-principalpaymentfromStep3)5. StartagainatStep2andrepeat.StepstoAmortizingaLoan1. CalculatethepaymentperJulieMillerisborrowing$10,000atacompoundannualinterestrateof12%.Amortizetheloanifannualpaymentsaremadefor5years.Step1: Payment
PV0 =R(PVIFAi%,n)
$10,000 =R(PVIFA12%,5)
$10,000 =R(3.605)
R=$10,000/3.605=$2,774AmortizingaLoanExampleJulieMillerisborrowing$10,EndofYearPaymentInterestPrincipalEndingBalance0———$10,0001$2,774$1,200$1,5748,42622,7741,0111,7636,66332,7748001,9744,68942,7745632,2112,47852,7752972,4780$13,871$3,871$10,000[LastPaymentSlightlyHigherDuetoRounding]AmortizingaLoanExampleEndofYearPaymentInterestPrinc2. CalculateDebtOutstanding–Thequantityofoutstandingdebtmaybeusedinfinancingtheday-to-dayactivitiesofthefirm.1. DetermineInterestExpense– Interestexpensesmayreduce taxableincomeofthefirm.UsefulnessofAmortization2. CalculateDebtOutstandingChapter3TheTimeValueofMoneyChapter3TheTimeValueofMonAfterstudyingChapter3,youshouldbeableto:Understandwhatismeantby"thetimevalueofmoney."Understandtherelationshipbetweenpresentandfuturevalue.Describehowtheinterestratecanbeusedtoadjustthevalueofcashflows–bothforwardandbackward–toasinglepointintime.Calculateboththefutureandpresentvalueof:(a)anamountinvestedtoday;(b)astreamofequalcashflows(anannuity);and(c)astreamofmixedcashflows.Distinguishbetweenan“ordinaryannuity”andan“annuitydue.”Useinterestfactortablesandunderstandhowtheyprovideashortcuttocalculatingpresentandfuturevalues.Useinterestfactortablestofindanunknowninterestrateorgrowthratewhenthenumberoftimeperiodsandfutureandpresentvaluesareknown.Buildan“amortizationschedule”foraninstallment-styleloan.AfterstudyingChapter3,youTheTimeValueofMoney
TheInterestRateSimpleInterestCompoundInterestAmortizingaLoanCompoundingMoreThanOnceperYearTheTimeValueofMoneyTheInObviously,$10,000today.YoualreadyrecognizethatthereisTIMEVALUETOMONEY!!TheInterestRateWhichwouldyouprefer–$10,000todayor$10,000in5years?Obviously,$10,000today.TheITIMEallowsyoutheopportunitytopostponeconsumptionandearnINTEREST.WhyTIME?WhyisTIMEsuchanimportantelementinyourdecision?TIMEallowsyoutheopportunitTypesofInterestCompoundInterestInterestpaid(earned)onanypreviousinterestearned,aswellasontheprincipalborrowed(lent).SimpleInterestInterestpaid(earned)ononlytheoriginalamount,orprincipal,borrowed(lent).TypesofInterestCompoundInteSimpleInterestFormulaFormula
SI=P0(i)(n)
SI: SimpleInterest
P0: Deposittoday(t=0)
i: InterestRateperPeriod n: NumberofTimePeriodsSimpleInterestFormulaFormulaSI =P0(i)(n)
=$1,000(0.07)(2) =$140SimpleInterestExampleAssumethatyoudeposit$1,000inanaccountearning7%simpleinterestfor2years.Whatistheaccumulatedinterestattheendofthe2ndyear?SI =P0(i)(n) =$1,000(
FV =P0+SI =$1,000
+$140 =
$1,140FutureValue
isthevalueatsomefuturetimeofapresentamountofmoney,oraseriesofpayments,evaluatedatagiveninterestrate.SimpleInterest(FV)WhatistheFutureValue(FV)ofthedeposit? FV =P0+SI =$1,0
ThePresentValueissimplythe $1,000youoriginallydeposited. Thatisthevaluetoday!PresentValue
isthecurrentvalueofafutureamountofmoney,oraseriesofpayments,evaluatedatagiveninterestrate.SimpleInterest(PV)WhatisthePresentValue(PV)ofthepreviousproblem? ThePresentValueissimplyWhyCompoundInterest?FutureValue(U.S.Dollars)WhyCompoundInterest?FutureV
Assumethatyoudeposit$1,000atacompoundinterestrateof7%for2years.FutureValue
SingleDeposit(Graphic)
0
1
2$1,000FV27% Assumethatyoudeposit$1,00FV1 =P0(1+i)1 =$1,000
(1.07) =$1,070CompoundInterest Youearned$70interestonyour$1,000depositoverthefirstyear. Thisisthesameamountofinterestyouwouldearnundersimpleinterest.FutureValue
SingleDeposit(Formula)FV1 =P0(1+i)1 =$1,000FV1 =P0
(1+i)1 =$1,000(1.07) =$1,070FV2 =FV1(1+i)1 =P0(1+i)(1+i)=$1,000(1.07)(1.07) =P0
(1+i)2 =$1,000(1.07)2 =$1,144.90YouearnedanEXTRA
$4.90inYear2withcompoundoversimpleinterest.FutureValue SingleDeposit(Formula)FV1 =P0(1+i)1 =$1,0
FV1 =P0(1+i)1
FV2 =P0(1+i)2GeneralFutureValueFormula:
FVn =P0(1+i)n
or FVn=P0(FVIFi,n)–SeeTableIGeneralFutureValueFormulaetc. FV1 =P0(1+i)1GeneralFuFVIFi,n
isfoundonTableIattheendofthebook.ValuationUsingTableIFVIFi,nisfoundonTableIVa
FV2 =$1,000(FVIF7%,2) =$1,000(1.145) =$1,145
[DuetoRounding]UsingFutureValueTables FV2 =$1,000(FVIF7%,2) =
JulieMillerwantstoknowhowlargeherdepositof$10,000todaywillbecomeatacompoundannualinterestrateof10%for5years.StoryProblemExample
012345$10,000FV510% JulieMillerwantstoknowhoCalculationbasedonTableI:
FV5
=$10,000
(FVIF10%,5)
=$10,000
(1.611) =$16,110 [DuetoRounding]StoryProblemSolutionCalculationbasedongeneralformula:
FVn =P0(1+i)n
FV5
=$10,000(1+0.10)5 =$16,105.10CalculationbasedonTableI: Wewillusethe“Rule-of-72”.DoubleYourMoney!!!Quick!Howlongdoesittaketodouble$5,000atacompoundrateof12%peryear(approx.)?Wewillusethe“Rule-of-72”.DApprox.YearstoDouble=72
/i%72/12%=6Years[ActualTimeis6.12Years]The“Rule-of-72”Quick!Howlongdoesittaketodouble$5,000atacompoundrateof12%peryear(approx.)?Approx.YearstoDouble=72/Assumethatyouneed$1,000
in2years.Let’sexaminetheprocesstodeterminehowmuchyouneedtodeposittodayatadiscountrateof7%compoundedannually.
0
1
2$1,0007%PV1PV0PresentValue SingleDeposit(Graphic)Assumethatyouneed$1,000in
PV0=FV2/(1+i)2 =$1,000
/(1.07)2 =FV2/(1+i)2
=$873.44
0
1
2$1,0007%PV0PresentValue
SingleDeposit(Formula)PV0=FV2/(1+i)2 =$1,
PV0
=FV1/(1+i)1
PV0=FV2/(1+i)2GeneralPresentValueFormula:
PV0 =FVn/(1+i)n
or PV0=FVn(PVIFi,n)–SeeTableIIetc.GeneralPresentValueFormula PV0=FV1/(1+i)1etc.GenPVIFi,n
isfoundonTableIIattheendofthebook.ValuationUsingTableIIPVIFi,nisfoundonTableIIV
PV2 =$1,000(PVIF7%,2) =$1,000(.873) =$873
[DuetoRounding]UsingPresentValueTables PV2 =$1,000(PVIF7%,2) =
JulieMillerwantstoknowhowlargeofadeposittomakesothatthemoneywillgrowto$10,000
in5yearsatadiscountrateof10%.
012345$10,000PV010%StoryProblemExample JulieMillerwantstoknowho
Calculationbasedongeneralformula:
PV0 =FVn/(1+i)n
PV0
=$10,000
/(1+0.10)5 =$6,209.21
CalculationbasedonTableI:
PV0
=$10,000
(PVIF10%,5)
=$10,000
(0.621) =$6,210.00
[DuetoRounding]StoryProblemSolution CalculationbasedongeneralOrdinaryAnnuity:Paymentsorreceiptsoccurattheendofeachperiod.AnnuityDue:Paymentsorreceiptsoccuratthe beginningofeachperiod.AnAnnuityrepresentsaseriesofequalpayments(orreceipts)occurringoveraspecifiednumberofequidistantperiods.TypesofAnnuitiesOrdinaryAnnuity:Paymentsor
StudentLoanPaymentsCarLoanPaymentsInsurancePremiumsMortgagePaymentsRetirementSavingsExamplesofAnnuitiesStudentLoanPaymentsExample0123
$100$100$100(OrdinaryAnnuity)EndofPeriod1EndofPeriod2TodayEqualCashFlowsEach1PeriodApartEndofPeriod3PartsofanAnnuity010123$100$100$100(AnnuityDue)BeginningofPeriod1BeginningofPeriod2TodayEqualCashFlowsEach1PeriodApartBeginningofPeriod3PartsofanAnnuity01FVAn=R(1+i)n-1+R(1+i)n-2+ ...+R(1+i)1
+R(1+i)0
RRR012nn+1FVAnR
=PeriodicCashFlowCashflowsoccurattheendoftheperiodi%...Overviewofan
OrdinaryAnnuity–FVAFVAn=R(1+i)n-1+R(1+i)n
FVA3=$1,000(1.07)2+ $1,000(1.07)1+$1,000(1.07)0
=$1,145
+
$1,070
+
$1,000
=
$3,215$1,000$1,000$1,0000123
4$3,215=FVA37%$1,070$1,145CashflowsoccurattheendoftheperiodExampleofan
OrdinaryAnnuity–FVA FVA3=$1,000(1.07)2+ Thefuturevalueofanordinaryannuitycanbeviewedasoccurringattheendofthelastcashflowperiod,whereasthefuturevalueofanannuityduecanbeviewedasoccurringatthebeginningofthelastcashflowperiod.HintonAnnuityValuationThefuturevalueofanordinar
FVAn =R(FVIFAi%,n) FVA3 =$1,000(FVIFA7%,3) =$1,000(3.215)=$3,215ValuationUsingTableIII FVAn =R(FVIFAi%,n) FVA3FVADn=R(1+i)n+R(1+i)n-1+ ...+R(1+i)2
+R(1+i)1 =FVAn(1+i)
RRRRR0123n–1
nFVADni%...OverviewViewofan
AnnuityDue–FVADCashflowsoccuratthebeginningoftheperiodFVADn=R(1+i)n+R(1+i)
FVAD3=$1,000(1.07)3+ $1,000(1.07)2+$1,000(1.07)1
=$1,225
+
$1,145
+
$1,070
=
$3,440$1,000$1,000$1,000$1,07001234$3,440=FVAD37%$1,225$1,145Exampleofan
AnnuityDue–FVADCash
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 現(xiàn)代農(nóng)技在醫(yī)療保健領域的創(chuàng)新應用以煙草種植為例
- 匯報在項目管理中的重要作用
- 現(xiàn)代市場營銷中的網(wǎng)絡直播工具選擇與應用
- 現(xiàn)代商業(yè)項目中的綠色建筑策略
- Unit 3 Transportation Period 1(說課稿)-2024-2025學年人教新起點版英語四年級上冊
- 2024-2025學年高中地理上學期第十三周 中國地理分區(qū) 第一節(jié) 北方地區(qū)說課稿
- 2024年三年級品社下冊《這周我當家》說課稿 遼師大版
- 5 數(shù)學廣角 - 鴿巢問題(說課稿)-2023-2024學年六年級下冊數(shù)學人教版
- 16 表里的生物(說課稿)-2023-2024學年統(tǒng)編版語文六年級下冊
- 2023九年級數(shù)學下冊 第24章 圓24.4 直線與圓的位置關系第2課時 切線的判定定理說課稿 (新版)滬科版
- 2025-2030年中國納米氧化鋁行業(yè)發(fā)展前景與投資戰(zhàn)略研究報告新版
- 教育強國建設規(guī)劃綱要(2024-2035年)要點解讀(教育是強國建設民族復興之基)
- 2025年度正規(guī)離婚協(xié)議書電子版下載服務
- 2025年貴州蔬菜集團有限公司招聘筆試參考題庫含答案解析
- 煤礦安全生產(chǎn)方針及法律法規(guī)課件
- 2025年教科室工作計劃樣本(四篇)
- 2024年版古董古玩買賣合同:古玩交易稅費及支付規(guī)定
- 幼兒園費用報銷管理制度
- 進入答辯環(huán)節(jié)的高職應用技術推廣中心申報書(最終版)
- 工時定額編制標準(焊接)
- 三位數(shù)乘一位數(shù)練習題(精選100道)
評論
0/150
提交評論