管理學財務管理第三章課件_第1頁
管理學財務管理第三章課件_第2頁
管理學財務管理第三章課件_第3頁
管理學財務管理第三章課件_第4頁
管理學財務管理第三章課件_第5頁
已閱讀5頁,還剩113頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

Chapter3TheTimeValueofMoneyChapter3TheTimeValueofMonAfterstudyingChapter3,youshouldbeableto:Understandwhatismeantby"thetimevalueofmoney."Understandtherelationshipbetweenpresentandfuturevalue.Describehowtheinterestratecanbeusedtoadjustthevalueofcashflows–bothforwardandbackward–toasinglepointintime.Calculateboththefutureandpresentvalueof:(a)anamountinvestedtoday;(b)astreamofequalcashflows(anannuity);and(c)astreamofmixedcashflows.Distinguishbetweenan“ordinaryannuity”andan“annuitydue.”Useinterestfactortablesandunderstandhowtheyprovideashortcuttocalculatingpresentandfuturevalues.Useinterestfactortablestofindanunknowninterestrateorgrowthratewhenthenumberoftimeperiodsandfutureandpresentvaluesareknown.Buildan“amortizationschedule”foraninstallment-styleloan.AfterstudyingChapter3,youTheTimeValueofMoney

TheInterestRateSimpleInterestCompoundInterestAmortizingaLoanCompoundingMoreThanOnceperYearTheTimeValueofMoneyTheInObviously,$10,000today.YoualreadyrecognizethatthereisTIMEVALUETOMONEY!!TheInterestRateWhichwouldyouprefer–$10,000todayor$10,000in5years?Obviously,$10,000today.TheITIMEallowsyoutheopportunitytopostponeconsumptionandearnINTEREST.WhyTIME?WhyisTIMEsuchanimportantelementinyourdecision?TIMEallowsyoutheopportunitTypesofInterestCompoundInterestInterestpaid(earned)onanypreviousinterestearned,aswellasontheprincipalborrowed(lent).SimpleInterestInterestpaid(earned)ononlytheoriginalamount,orprincipal,borrowed(lent).TypesofInterestCompoundInteSimpleInterestFormulaFormula

SI=P0(i)(n)

SI: SimpleInterest

P0: Deposittoday(t=0)

i: InterestRateperPeriod n: NumberofTimePeriodsSimpleInterestFormulaFormulaSI =P0(i)(n)

=$1,000(0.07)(2) =$140SimpleInterestExampleAssumethatyoudeposit$1,000inanaccountearning7%simpleinterestfor2years.Whatistheaccumulatedinterestattheendofthe2ndyear?SI =P0(i)(n) =$1,000(

FV =P0+SI =$1,000

+$140 =

$1,140FutureValue

isthevalueatsomefuturetimeofapresentamountofmoney,oraseriesofpayments,evaluatedatagiveninterestrate.SimpleInterest(FV)WhatistheFutureValue(FV)ofthedeposit? FV =P0+SI =$1,0

ThePresentValueissimplythe $1,000youoriginallydeposited. Thatisthevaluetoday!PresentValue

isthecurrentvalueofafutureamountofmoney,oraseriesofpayments,evaluatedatagiveninterestrate.SimpleInterest(PV)WhatisthePresentValue(PV)ofthepreviousproblem? ThePresentValueissimplyWhyCompoundInterest?FutureValue(U.S.Dollars)WhyCompoundInterest?FutureV

Assumethatyoudeposit$1,000atacompoundinterestrateof7%for2years.FutureValue

SingleDeposit(Graphic)

0

1

2$1,000FV27% Assumethatyoudeposit$1,00FV1 =P0(1+i)1 =$1,000

(1.07) =$1,070CompoundInterest Youearned$70interestonyour$1,000depositoverthefirstyear. Thisisthesameamountofinterestyouwouldearnundersimpleinterest.FutureValue

SingleDeposit(Formula)FV1 =P0(1+i)1 =$1,000FV1 =P0

(1+i)1 =$1,000(1.07) =$1,070FV2 =FV1(1+i)1 =P0(1+i)(1+i)=$1,000(1.07)(1.07) =P0

(1+i)2 =$1,000(1.07)2 =$1,144.90YouearnedanEXTRA

$4.90inYear2withcompoundoversimpleinterest.FutureValue SingleDeposit(Formula)FV1 =P0(1+i)1 =$1,0

FV1 =P0(1+i)1

FV2 =P0(1+i)2GeneralFutureValueFormula:

FVn =P0(1+i)n

or FVn=P0(FVIFi,n)–SeeTableIGeneralFutureValueFormulaetc. FV1 =P0(1+i)1GeneralFuFVIFi,n

isfoundonTableIattheendofthebook.ValuationUsingTableIFVIFi,nisfoundonTableIVa

FV2 =$1,000(FVIF7%,2) =$1,000(1.145) =$1,145

[DuetoRounding]UsingFutureValueTables FV2 =$1,000(FVIF7%,2) =

JulieMillerwantstoknowhowlargeherdepositof$10,000todaywillbecomeatacompoundannualinterestrateof10%for5years.StoryProblemExample

012345$10,000FV510% JulieMillerwantstoknowhoCalculationbasedonTableI:

FV5

=$10,000

(FVIF10%,5)

=$10,000

(1.611) =$16,110 [DuetoRounding]StoryProblemSolutionCalculationbasedongeneralformula:

FVn =P0(1+i)n

FV5

=$10,000(1+0.10)5 =$16,105.10CalculationbasedonTableI: Wewillusethe“Rule-of-72”.DoubleYourMoney!!!Quick!Howlongdoesittaketodouble$5,000atacompoundrateof12%peryear(approx.)?Wewillusethe“Rule-of-72”.DApprox.YearstoDouble=72

/i%72/12%=6Years[ActualTimeis6.12Years]The“Rule-of-72”Quick!Howlongdoesittaketodouble$5,000atacompoundrateof12%peryear(approx.)?Approx.YearstoDouble=72/Assumethatyouneed$1,000

in2years.Let’sexaminetheprocesstodeterminehowmuchyouneedtodeposittodayatadiscountrateof7%compoundedannually.

0

1

2$1,0007%PV1PV0PresentValue SingleDeposit(Graphic)Assumethatyouneed$1,000in

PV0=FV2/(1+i)2 =$1,000

/(1.07)2 =FV2/(1+i)2

=$873.44

0

1

2$1,0007%PV0PresentValue

SingleDeposit(Formula)PV0=FV2/(1+i)2 =$1,

PV0

=FV1/(1+i)1

PV0=FV2/(1+i)2GeneralPresentValueFormula:

PV0 =FVn/(1+i)n

or PV0=FVn(PVIFi,n)–SeeTableIIetc.GeneralPresentValueFormula PV0=FV1/(1+i)1etc.GenPVIFi,n

isfoundonTableIIattheendofthebook.ValuationUsingTableIIPVIFi,nisfoundonTableIIV

PV2 =$1,000(PVIF7%,2) =$1,000(.873) =$873

[DuetoRounding]UsingPresentValueTables PV2 =$1,000(PVIF7%,2) =

JulieMillerwantstoknowhowlargeofadeposittomakesothatthemoneywillgrowto$10,000

in5yearsatadiscountrateof10%.

012345$10,000PV010%StoryProblemExample JulieMillerwantstoknowho

Calculationbasedongeneralformula:

PV0 =FVn/(1+i)n

PV0

=$10,000

/(1+0.10)5 =$6,209.21

CalculationbasedonTableI:

PV0

=$10,000

(PVIF10%,5)

=$10,000

(0.621) =$6,210.00

[DuetoRounding]StoryProblemSolution CalculationbasedongeneralOrdinaryAnnuity:Paymentsorreceiptsoccurattheendofeachperiod.AnnuityDue:Paymentsorreceiptsoccuratthe beginningofeachperiod.AnAnnuityrepresentsaseriesofequalpayments(orreceipts)occurringoveraspecifiednumberofequidistantperiods.TypesofAnnuitiesOrdinaryAnnuity:Paymentsor

StudentLoanPaymentsCarLoanPaymentsInsurancePremiumsMortgagePaymentsRetirementSavingsExamplesofAnnuitiesStudentLoanPaymentsExample0123

$100$100$100(OrdinaryAnnuity)EndofPeriod1EndofPeriod2TodayEqualCashFlowsEach1PeriodApartEndofPeriod3PartsofanAnnuity010123$100$100$100(AnnuityDue)BeginningofPeriod1BeginningofPeriod2TodayEqualCashFlowsEach1PeriodApartBeginningofPeriod3PartsofanAnnuity01FVAn=R(1+i)n-1+R(1+i)n-2+ ...+R(1+i)1

+R(1+i)0

RRR012nn+1FVAnR

=PeriodicCashFlowCashflowsoccurattheendoftheperiodi%...Overviewofan

OrdinaryAnnuity–FVAFVAn=R(1+i)n-1+R(1+i)n

FVA3=$1,000(1.07)2+ $1,000(1.07)1+$1,000(1.07)0

=$1,145

+

$1,070

+

$1,000

=

$3,215$1,000$1,000$1,0000123

4$3,215=FVA37%$1,070$1,145CashflowsoccurattheendoftheperiodExampleofan

OrdinaryAnnuity–FVA FVA3=$1,000(1.07)2+ Thefuturevalueofanordinaryannuitycanbeviewedasoccurringattheendofthelastcashflowperiod,whereasthefuturevalueofanannuityduecanbeviewedasoccurringatthebeginningofthelastcashflowperiod.HintonAnnuityValuationThefuturevalueofanordinar

FVAn =R(FVIFAi%,n) FVA3 =$1,000(FVIFA7%,3) =$1,000(3.215)=$3,215ValuationUsingTableIII FVAn =R(FVIFAi%,n) FVA3FVADn=R(1+i)n+R(1+i)n-1+ ...+R(1+i)2

+R(1+i)1 =FVAn(1+i)

RRRRR0123n–1

nFVADni%...OverviewViewofan

AnnuityDue–FVADCashflowsoccuratthebeginningoftheperiodFVADn=R(1+i)n+R(1+i)

FVAD3=$1,000(1.07)3+ $1,000(1.07)2+$1,000(1.07)1

=$1,225

+

$1,145

+

$1,070

=

$3,440$1,000$1,000$1,000$1,07001234$3,440=FVAD37%$1,225$1,145Exampleofan

AnnuityDue–FVADCashflowsoccuratthebeginningoftheperiod FVAD3=$1,000(1.07)3+ FVADn =R(FVIFAi%,n)(1+i) FVAD3 =$1,000(FVIFA7%,3)(1.07) =$1,000(3.215)(1.07)=$3,440ValuationUsingTableIIIFVADn =R(FVIFAi%,n)(1+i) PVAn=R/(1+i)1+R/(1+i)2 +...+R/(1+i)n

RRR012nn+1PVAnR

=PeriodicCashFlowi%...Overviewofan

OrdinaryAnnuity–PVACashflowsoccurattheendoftheperiodPVAn=R/(1+i)1+R/(1+i)2

PVA3= $1,000/(1.07)1+ $1,000/(1.07)2+ $1,000/(1.07)3

=$934.58+$873.44+$816.30 =

$2,624.32$1,000$1,000$1,00001234$2,624.32=PVA37%$934.58$873.44$816.30Exampleofan

OrdinaryAnnuity–PVACashflowsoccurattheendoftheperiod PVA3= $1,000/(1.07)1+ Thepresentvalueofanordinaryannuitycanbeviewedasoccurringatthebeginningofthefirstcashflowperiod,whereasthefuturevalueofanannuityduecanbeviewedasoccurringattheendofthefirstcashflowperiod.HintonAnnuityValuationThepresentvalueofanordina

PVAn =R(PVIFAi%,n) PVA3 =$1,000(PVIFA7%,3) =$1,000(2.624)=$2,624ValuationUsingTableIV PVAn =R(PVIFAi%,n) PVA3PVADn=R/(1+i)0+R/(1+i)1+...+R/(1+i)n–1

=PVAn(1+i)

RRRR012n–1

nPVADnR:PeriodicCashFlowi%...Overviewofan

AnnuityDue–PVADCashflowsoccuratthebeginningoftheperiodPVADn=R/(1+i)0+R/(1+iPVADn=$1,000/(1.07)0+$1,000/(1.07)1+ $1,000/(1.07)2=$2,808.02$1,000.00$1,000$1,0000123

4$2,808.02=PVADn7%$934.58$873.44Exampleofan

AnnuityDue–PVADCashflowsoccuratthebeginningoftheperiodPVADn=$1,000/(1.07)0+$1,00PVADn=R(PVIFAi%,n)(1+i) PVAD3 =$1,000(PVIFA7%,3)(1.07) =$1,000(2.624)(1.07)=$2,808ValuationUsingTableIVPVADn=R(PVIFAi%,n)(1+i1.Readproblemthoroughly2.Createatimeline3.Putcashflowsandarrowsontimeline4.DetermineifitisaPVorFVproblem5.Determineifsolutioninvolvesasingle CF,annuitystream(s),ormixedflow6.Solvetheproblem7.Checkwithfinancialcalculator(optional)StepstoSolveTimeValueofMoneyProblems1.ReadproblemthoroughlySte

JulieMillerwillreceivethesetofcashflowsbelow.WhatisthePresentValueatadiscountrateof10%.

012345

$600$600$400$400$100PV010%MixedFlowsExample JulieMillerwillreceivethe

012345

$600$600$400$400$10010%$545.45$495.87$300.53$273.21$62.09$1677.15=PV0

oftheMixedFlow012

012345

$600$600$400$400$10010%$1,041.60$573.57$62.10$1,677.27

=PV0

ofMixedFlow[UsingTables]$600(PVIFA10%,2)=$600(1.736)=$1,041.60$400(PVIFA10%,2)(PVIF10%,2)=$400(1.736)(0.826)=$573.57$100(PVIF10%,5)=$100(0.621)=$62.10012GeneralFormula:FVn =PV0(1+[i/m])mn

n: NumberofYears m: CompoundingPeriodsperYear i: AnnualInterestRate FVn,m:FVattheendofYearn

PV0: PVoftheCashFlowtodayFrequencyofCompoundingGeneralFormula:FrequencyofCJulieMillerhas$1,000toinvestfor2Yearsatanannualinterestrateof12%.Annual FV2 =1,000(1+[0.12/1])(1)(2) =1,254.40Semi FV2 =1,000(1+[0.12/2])(2)(2) =1,262.48ImpactofFrequencyJulieMillerhas$1,000toinvQrtly FV2 =1,000(1+[0.12/4])(4)(2) =1,266.77MonthlyFV2

=1,000(1+[0.12/12])(12)(2) =1,269.73Daily FV2

=1,000(1+[0.12/365])(365)(2) =1,271.20ImpactofFrequencyQrtly FV2 =1,000(1+[0.EffectiveAnnualInterestRateTheactualrateofinterestearned(paid)afteradjustingthenominalrate

forfactorssuchasthenumberofcompoundingperiodsperyear.(1+[i

/m])m

–1EffectiveAnnual

InterestRateEffectiveAnnualInterestRateBasketWonders(BW)hasa$1,000CDatthebank.Theinterestrateis6%

compoundedquarterlyfor1year.WhatistheEffectiveAnnualInterestRate(EAR)?

EAR =(1+0.06/4)4–1 =1.0614-1=0.0614or6.14%!BWsEffective

AnnualInterestRateBasketWonders(BW)hasa$1,01. Calculatethepaymentperperiod.2. DeterminetheinterestinPeriodt. (LoanBalanceatt–1)x(i%/m)3. ComputeprincipalpaymentinPeriodt. (Payment-InterestfromStep2)4. DetermineendingbalanceinPeriodt. (Balance-principalpaymentfromStep3)5. StartagainatStep2andrepeat.StepstoAmortizingaLoan1. CalculatethepaymentperJulieMillerisborrowing$10,000atacompoundannualinterestrateof12%.Amortizetheloanifannualpaymentsaremadefor5years.Step1: Payment

PV0 =R(PVIFAi%,n)

$10,000 =R(PVIFA12%,5)

$10,000 =R(3.605)

R=$10,000/3.605=$2,774AmortizingaLoanExampleJulieMillerisborrowing$10,EndofYearPaymentInterestPrincipalEndingBalance0———$10,0001$2,774$1,200$1,5748,42622,7741,0111,7636,66332,7748001,9744,68942,7745632,2112,47852,7752972,4780$13,871$3,871$10,000[LastPaymentSlightlyHigherDuetoRounding]AmortizingaLoanExampleEndofYearPaymentInterestPrinc2. CalculateDebtOutstanding–Thequantityofoutstandingdebtmaybeusedinfinancingtheday-to-dayactivitiesofthefirm.1. DetermineInterestExpense– Interestexpensesmayreduce taxableincomeofthefirm.UsefulnessofAmortization2. CalculateDebtOutstandingChapter3TheTimeValueofMoneyChapter3TheTimeValueofMonAfterstudyingChapter3,youshouldbeableto:Understandwhatismeantby"thetimevalueofmoney."Understandtherelationshipbetweenpresentandfuturevalue.Describehowtheinterestratecanbeusedtoadjustthevalueofcashflows–bothforwardandbackward–toasinglepointintime.Calculateboththefutureandpresentvalueof:(a)anamountinvestedtoday;(b)astreamofequalcashflows(anannuity);and(c)astreamofmixedcashflows.Distinguishbetweenan“ordinaryannuity”andan“annuitydue.”Useinterestfactortablesandunderstandhowtheyprovideashortcuttocalculatingpresentandfuturevalues.Useinterestfactortablestofindanunknowninterestrateorgrowthratewhenthenumberoftimeperiodsandfutureandpresentvaluesareknown.Buildan“amortizationschedule”foraninstallment-styleloan.AfterstudyingChapter3,youTheTimeValueofMoney

TheInterestRateSimpleInterestCompoundInterestAmortizingaLoanCompoundingMoreThanOnceperYearTheTimeValueofMoneyTheInObviously,$10,000today.YoualreadyrecognizethatthereisTIMEVALUETOMONEY!!TheInterestRateWhichwouldyouprefer–$10,000todayor$10,000in5years?Obviously,$10,000today.TheITIMEallowsyoutheopportunitytopostponeconsumptionandearnINTEREST.WhyTIME?WhyisTIMEsuchanimportantelementinyourdecision?TIMEallowsyoutheopportunitTypesofInterestCompoundInterestInterestpaid(earned)onanypreviousinterestearned,aswellasontheprincipalborrowed(lent).SimpleInterestInterestpaid(earned)ononlytheoriginalamount,orprincipal,borrowed(lent).TypesofInterestCompoundInteSimpleInterestFormulaFormula

SI=P0(i)(n)

SI: SimpleInterest

P0: Deposittoday(t=0)

i: InterestRateperPeriod n: NumberofTimePeriodsSimpleInterestFormulaFormulaSI =P0(i)(n)

=$1,000(0.07)(2) =$140SimpleInterestExampleAssumethatyoudeposit$1,000inanaccountearning7%simpleinterestfor2years.Whatistheaccumulatedinterestattheendofthe2ndyear?SI =P0(i)(n) =$1,000(

FV =P0+SI =$1,000

+$140 =

$1,140FutureValue

isthevalueatsomefuturetimeofapresentamountofmoney,oraseriesofpayments,evaluatedatagiveninterestrate.SimpleInterest(FV)WhatistheFutureValue(FV)ofthedeposit? FV =P0+SI =$1,0

ThePresentValueissimplythe $1,000youoriginallydeposited. Thatisthevaluetoday!PresentValue

isthecurrentvalueofafutureamountofmoney,oraseriesofpayments,evaluatedatagiveninterestrate.SimpleInterest(PV)WhatisthePresentValue(PV)ofthepreviousproblem? ThePresentValueissimplyWhyCompoundInterest?FutureValue(U.S.Dollars)WhyCompoundInterest?FutureV

Assumethatyoudeposit$1,000atacompoundinterestrateof7%for2years.FutureValue

SingleDeposit(Graphic)

0

1

2$1,000FV27% Assumethatyoudeposit$1,00FV1 =P0(1+i)1 =$1,000

(1.07) =$1,070CompoundInterest Youearned$70interestonyour$1,000depositoverthefirstyear. Thisisthesameamountofinterestyouwouldearnundersimpleinterest.FutureValue

SingleDeposit(Formula)FV1 =P0(1+i)1 =$1,000FV1 =P0

(1+i)1 =$1,000(1.07) =$1,070FV2 =FV1(1+i)1 =P0(1+i)(1+i)=$1,000(1.07)(1.07) =P0

(1+i)2 =$1,000(1.07)2 =$1,144.90YouearnedanEXTRA

$4.90inYear2withcompoundoversimpleinterest.FutureValue SingleDeposit(Formula)FV1 =P0(1+i)1 =$1,0

FV1 =P0(1+i)1

FV2 =P0(1+i)2GeneralFutureValueFormula:

FVn =P0(1+i)n

or FVn=P0(FVIFi,n)–SeeTableIGeneralFutureValueFormulaetc. FV1 =P0(1+i)1GeneralFuFVIFi,n

isfoundonTableIattheendofthebook.ValuationUsingTableIFVIFi,nisfoundonTableIVa

FV2 =$1,000(FVIF7%,2) =$1,000(1.145) =$1,145

[DuetoRounding]UsingFutureValueTables FV2 =$1,000(FVIF7%,2) =

JulieMillerwantstoknowhowlargeherdepositof$10,000todaywillbecomeatacompoundannualinterestrateof10%for5years.StoryProblemExample

012345$10,000FV510% JulieMillerwantstoknowhoCalculationbasedonTableI:

FV5

=$10,000

(FVIF10%,5)

=$10,000

(1.611) =$16,110 [DuetoRounding]StoryProblemSolutionCalculationbasedongeneralformula:

FVn =P0(1+i)n

FV5

=$10,000(1+0.10)5 =$16,105.10CalculationbasedonTableI: Wewillusethe“Rule-of-72”.DoubleYourMoney!!!Quick!Howlongdoesittaketodouble$5,000atacompoundrateof12%peryear(approx.)?Wewillusethe“Rule-of-72”.DApprox.YearstoDouble=72

/i%72/12%=6Years[ActualTimeis6.12Years]The“Rule-of-72”Quick!Howlongdoesittaketodouble$5,000atacompoundrateof12%peryear(approx.)?Approx.YearstoDouble=72/Assumethatyouneed$1,000

in2years.Let’sexaminetheprocesstodeterminehowmuchyouneedtodeposittodayatadiscountrateof7%compoundedannually.

0

1

2$1,0007%PV1PV0PresentValue SingleDeposit(Graphic)Assumethatyouneed$1,000in

PV0=FV2/(1+i)2 =$1,000

/(1.07)2 =FV2/(1+i)2

=$873.44

0

1

2$1,0007%PV0PresentValue

SingleDeposit(Formula)PV0=FV2/(1+i)2 =$1,

PV0

=FV1/(1+i)1

PV0=FV2/(1+i)2GeneralPresentValueFormula:

PV0 =FVn/(1+i)n

or PV0=FVn(PVIFi,n)–SeeTableIIetc.GeneralPresentValueFormula PV0=FV1/(1+i)1etc.GenPVIFi,n

isfoundonTableIIattheendofthebook.ValuationUsingTableIIPVIFi,nisfoundonTableIIV

PV2 =$1,000(PVIF7%,2) =$1,000(.873) =$873

[DuetoRounding]UsingPresentValueTables PV2 =$1,000(PVIF7%,2) =

JulieMillerwantstoknowhowlargeofadeposittomakesothatthemoneywillgrowto$10,000

in5yearsatadiscountrateof10%.

012345$10,000PV010%StoryProblemExample JulieMillerwantstoknowho

Calculationbasedongeneralformula:

PV0 =FVn/(1+i)n

PV0

=$10,000

/(1+0.10)5 =$6,209.21

CalculationbasedonTableI:

PV0

=$10,000

(PVIF10%,5)

=$10,000

(0.621) =$6,210.00

[DuetoRounding]StoryProblemSolution CalculationbasedongeneralOrdinaryAnnuity:Paymentsorreceiptsoccurattheendofeachperiod.AnnuityDue:Paymentsorreceiptsoccuratthe beginningofeachperiod.AnAnnuityrepresentsaseriesofequalpayments(orreceipts)occurringoveraspecifiednumberofequidistantperiods.TypesofAnnuitiesOrdinaryAnnuity:Paymentsor

StudentLoanPaymentsCarLoanPaymentsInsurancePremiumsMortgagePaymentsRetirementSavingsExamplesofAnnuitiesStudentLoanPaymentsExample0123

$100$100$100(OrdinaryAnnuity)EndofPeriod1EndofPeriod2TodayEqualCashFlowsEach1PeriodApartEndofPeriod3PartsofanAnnuity010123$100$100$100(AnnuityDue)BeginningofPeriod1BeginningofPeriod2TodayEqualCashFlowsEach1PeriodApartBeginningofPeriod3PartsofanAnnuity01FVAn=R(1+i)n-1+R(1+i)n-2+ ...+R(1+i)1

+R(1+i)0

RRR012nn+1FVAnR

=PeriodicCashFlowCashflowsoccurattheendoftheperiodi%...Overviewofan

OrdinaryAnnuity–FVAFVAn=R(1+i)n-1+R(1+i)n

FVA3=$1,000(1.07)2+ $1,000(1.07)1+$1,000(1.07)0

=$1,145

+

$1,070

+

$1,000

=

$3,215$1,000$1,000$1,0000123

4$3,215=FVA37%$1,070$1,145CashflowsoccurattheendoftheperiodExampleofan

OrdinaryAnnuity–FVA FVA3=$1,000(1.07)2+ Thefuturevalueofanordinaryannuitycanbeviewedasoccurringattheendofthelastcashflowperiod,whereasthefuturevalueofanannuityduecanbeviewedasoccurringatthebeginningofthelastcashflowperiod.HintonAnnuityValuationThefuturevalueofanordinar

FVAn =R(FVIFAi%,n) FVA3 =$1,000(FVIFA7%,3) =$1,000(3.215)=$3,215ValuationUsingTableIII FVAn =R(FVIFAi%,n) FVA3FVADn=R(1+i)n+R(1+i)n-1+ ...+R(1+i)2

+R(1+i)1 =FVAn(1+i)

RRRRR0123n–1

nFVADni%...OverviewViewofan

AnnuityDue–FVADCashflowsoccuratthebeginningoftheperiodFVADn=R(1+i)n+R(1+i)

FVAD3=$1,000(1.07)3+ $1,000(1.07)2+$1,000(1.07)1

=$1,225

+

$1,145

+

$1,070

=

$3,440$1,000$1,000$1,000$1,07001234$3,440=FVAD37%$1,225$1,145Exampleofan

AnnuityDue–FVADCash

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論