支持學(xué)生創(chuàng)造性學(xué)習(xí)與表達(dá) 數(shù)學(xué)的創(chuàng)造性學(xué)習(xí)_第1頁
支持學(xué)生創(chuàng)造性學(xué)習(xí)與表達(dá) 數(shù)學(xué)的創(chuàng)造性學(xué)習(xí)_第2頁
支持學(xué)生創(chuàng)造性學(xué)習(xí)與表達(dá) 數(shù)學(xué)的創(chuàng)造性學(xué)習(xí)_第3頁
支持學(xué)生創(chuàng)造性學(xué)習(xí)與表達(dá) 數(shù)學(xué)的創(chuàng)造性學(xué)習(xí)_第4頁
支持學(xué)生創(chuàng)造性學(xué)習(xí)與表達(dá) 數(shù)學(xué)的創(chuàng)造性學(xué)習(xí)_第5頁
已閱讀5頁,還剩3頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

數(shù)學(xué)的創(chuàng)造性學(xué)習(xí)什么是數(shù)?開天辟地之初,人類就開始與數(shù)打交道。數(shù)即是數(shù)目的意思。正如《漢書?律歷志上》云:“數(shù)者,一十百千萬也?!睌?shù)進(jìn)入數(shù)學(xué)體系就成為它的最基本概念之一,數(shù)的概念是隨著人類的生產(chǎn)和生活實踐的不斷發(fā)展而逐漸形成的,并且永無止境地發(fā)展著。從古至今,以自然數(shù)為開端,接著是有理數(shù)與無理數(shù)、正數(shù)與負(fù)數(shù)、實數(shù)與虛數(shù),直至復(fù)數(shù),共同構(gòu)成數(shù)的概念不斷拓展的系列。每一次拓展都是一次創(chuàng)造思維的躍升。什么是數(shù)學(xué)?數(shù)學(xué)是研究現(xiàn)實世界的空間形式和數(shù)量關(guān)系的科學(xué)。古時候,人類在生產(chǎn)和生活實踐中便獲得了數(shù)的概念和一些簡單幾何形體的概念。自此開始,到16世紀(jì),創(chuàng)立了包括算術(shù)、初等代數(shù)、初等幾何和三角的初等數(shù)學(xué)。17世紀(jì)引入變量概念是數(shù)學(xué)發(fā)展史中的轉(zhuǎn)折點,這使得運動和辯證法進(jìn)入數(shù)學(xué),開始研究變化中的量與量之間相互制約關(guān)系和圖形間的相互變換。近年來,由于數(shù)學(xué)在自然科學(xué)和技術(shù)領(lǐng)域的廣泛應(yīng)用,又由于計算技術(shù)的迅猛發(fā)展,數(shù)學(xué)對人類認(rèn)識自然和改造自然的重要作用也顯示得更加清楚了。至今,現(xiàn)代數(shù)學(xué)已經(jīng)形成了包括數(shù)理邏輯、數(shù)論、代數(shù)學(xué)、幾何學(xué)、拓?fù)鋵W(xué)、函數(shù)論、泛函分析、微分方程、概率論、數(shù)理統(tǒng)計、計算數(shù)學(xué)及邊緣學(xué)科運籌學(xué)、控制論等在內(nèi)的龐大體系與數(shù)的發(fā)展一樣,數(shù)學(xué)發(fā)展史也是創(chuàng)造思維不斷發(fā)展的歷史。數(shù)學(xué)是中小學(xué)生的主科。數(shù)學(xué)學(xué)習(xí)是中小學(xué)生增長學(xué)習(xí)能力和創(chuàng)造能力的廣闊天地。一.驢唇怎能對得上馬嘴呢陰錯陽差的巧事,張冠李戴的誤會,在大千世界,這等笑話,時有發(fā)生??墒牵跀?shù)學(xué)課上,難道也會發(fā)生驢唇不對馬嘴的事情嗎?一)平地起風(fēng)雪話題是從一道淺顯的代數(shù)題引發(fā)的。這是一個發(fā)生在某中學(xué)初一新生的一節(jié)數(shù)學(xué)課上的小故事。快下課時,老師出了一道題:“若a為自然數(shù),說出a以后的7個連續(xù)自然數(shù)。"一個小女孩舉手搶答:“a,b,c,d,e,f,g。”話音剛落,便引起哄堂大笑,老師也愕然了。女孩覺察到,自己的答案,驢唇不對馬嘴。出了笑話,落個滿臉通紅。接著,一個男孩起來補正:“a+1,a+2,a+3,a+4,a+5,a+6,a+7。"爾后,下課鈴響了。事情平平常常。一個女孩答錯了題,一個男孩糾正過來,全班同學(xué)都明白了正確答案。下課,大家就都散了。那么,這件事是否到此就算了結(jié)了呢?請思考10分鐘,然后,發(fā)表你的見解。單兵——我看是了結(jié)了。老師完成了教學(xué)任務(wù),學(xué)生也完成了學(xué)習(xí)任務(wù)。焦小敏——如果說沒有了結(jié),那就是老師還得教育同學(xué)們,不要把這事當(dāng)成奚落那位小姑娘的笑柄。張娟——還有,班上的同學(xué)也有義務(wù)鼓勵那位小姑娘。趙燕——直截了當(dāng)?shù)卣f,我認(rèn)為沒有了結(jié)。因為任何結(jié)果都有原因。小姑娘答成“a,b,c,d,e,f,g”這是她思維的結(jié)果。那么,她一定有個由此及彼的思維過程,其中深藏著錯誤的原因。老師與那個小姑娘的任務(wù)是找出原因,避免再錯。如若不然,再遇類似問題,也許她又答成“甲、乙、丙、丁、戊、己、庚”呢。肖冬春——我同意這種看法。換句話說,知道男孩答案正確,并不等于找到自己的錯誤原因。韓小彧——前面幾位同學(xué)的發(fā)言,從不同的角度,各有各的道理。但是,又都有一個絕對化的框框束縛著。這就是姑娘的答案一無是處;小男孩的答案絕對正確,天衣無縫。這個框框正是上面5個發(fā)言的潛在的共同前提。當(dāng)然,錯誤答案之正確部分及正確答案之不足部分,如果真有,我現(xiàn)在還未想出。赫峰她提出的問題,是一條嶄新的思路,很有啟發(fā)。我發(fā)現(xiàn)小姑娘的答案中有一個合理的因素,7個字母與題目要求的7個自然數(shù)合得上。曹博——這么說來,錯誤答案中的合理因素,可不止這一個。題目要求“a以后”,按照英語字母表由b到g都在a以后。姚樹——題目要求“連續(xù)”,按英語字母表,從a到g是連續(xù)的,并沒斷開,也沒跳躍。祝越——7個符號都可以表示自然數(shù)。這一點。也是符合題目要求的。李河一一這么說來,“a以后”、“7個”、“連續(xù)”、“自然數(shù)”4大要素都合乎題目要求,錯在哪里呢?討論至此,真是平地起風(fēng)云。看來已經(jīng)結(jié)束的問題,卻又引出一片新話題。況且本來被公認(rèn)為絕對錯誤的答案,現(xiàn)在卻找不到一點破綻了。(二)罕見的對話正像大家的看法一樣,當(dāng)堂聽課的主任覺察到:這件事并未結(jié)束。下課后主任與老師討論,老師認(rèn)為“a+1”到“a+7”是唯一正確的答案,全班已懂,教學(xué)任務(wù)已告完成。主任又去問學(xué)生。大家說那個小女孩在小學(xué)時,特別喜歡英語。主任領(lǐng)悟了:小學(xué)時只是在英語學(xué)習(xí)中才見到過a,題目似乎要求寫出“a以后的7個”來,自然,a,b,c,d,e,f,g”在頭腦中出現(xiàn)了,又在口中說出了。這正是心理學(xué)上所說的副定勢起了作用。爾后,主任將女孩找到辦公室。先肯定她喜歡英語,大膽舉手的優(yōu)點,接著是雙方一連串的對話?!澳穷}明白了嗎?”“明白了?!薄澳愕拇鸢改兀俊薄叭e了。”“一點對的地方也沒有?”“沒有。”一丁點兒都沒有?”沒有?!闭娴膯??”我沒想過。”(唉!沒有想過就堅定地認(rèn)為自已全錯了?。┈F(xiàn)在想想看?!毕氩怀觥!?b,c,d,e,f,g,不是在a以后嗎?"是”。字母不是說了7個嗎?”是”。7個字母,排列有序,為什么不跳著說呢?!鳖}目上說……”“你看,‘a(chǎn)以后'、'7個'、'連續(xù)',都有了。這些字母又都能表示自然數(shù)。那么,哪有錯的地方呢?”“咦,怎么沒有錯的地方了呢?”最后,在主任啟發(fā)下,發(fā)現(xiàn)了錯誤:對于這些字母,沒有給出符合題意的數(shù)學(xué)含義。一句話,把英語字母轉(zhuǎn)化為數(shù)學(xué)符號的任務(wù),沒有完成。找出錯誤原因,就能糾正錯誤。簡單說,將7個英語字母賦予符合題意的數(shù)學(xué)含意就是了。這樣,找到了與眾不同的答案:若a為自然數(shù),令a'=a+l,b=a+2,c=a+3,d=a+4,e=a+5,f=a+6,g=a+7,貝Ua',b,c,d,e,f,g”便是正確答案。就是這樣,正確與錯誤之間,只有一小撇之差。還應(yīng)指出,運用這種靈活變通的思維方式,求解此題,正確答案是無窮盡的。即使是“甲、乙、丙、丁、戊、己、庚”,只要將其賦予符合題意的數(shù)學(xué)含義,也能成為正確答案。這么看來,把“a+1,a+2,a+3,a+4,a+5,a+6,a+7”看成唯一正確答案,失之于思維呆板,并且導(dǎo)致片面性和絕對化。(三)深刻的啟示中小學(xué)生在數(shù)學(xué)學(xué)習(xí)中,錯誤常見,改錯也常見。但是,這樣的改錯方式從未見過。這樣的改錯方式給我們的啟示是深刻的,是多方面的。1.在變通性的動態(tài)思考中更深刻地掌握數(shù)學(xué)新原理掌握數(shù)學(xué)概念和原理,運用相關(guān)概念、原理解答數(shù)學(xué)問題,從而獲得系統(tǒng)的數(shù)學(xué)知識,提高思維能力,這是數(shù)學(xué)學(xué)習(xí)的基本任務(wù)。用符號表示數(shù)是代數(shù)學(xué)的根本特點。在小學(xué)算術(shù)中只用阿拉伯?dāng)?shù)字表示固定的具體數(shù)目。而在中學(xué)代數(shù)中,就要用抽象符號表示多種多樣的數(shù)學(xué)含義。用符號表示數(shù)的課題,是代數(shù)起始課的重點和難點。上面的題,正是為了使學(xué)生掌握這個代數(shù)原理而設(shè)計的。兩種改錯方式對理解原理的作用是不同的。先看一般方式:a,b,c,d,e,f,g—a+1,a+2,a+3,a+4,a+5,a+6,a+7再看變通方式:a,b,c,d,e,f,gf令a'=a+l,b=a+2,c=a+3,d=c+4,e=a+5,f=a+6,g=a+7fa‘,b,c,d,e,f,g后者增加“令a'=a+l,,g=a+7”的一步,同時也就增加了“a‘?g”的新的答案形式,最后回到“a+1,……,a+7”的答案。中間增加兩步推導(dǎo),都運用了“符號表示數(shù)”的原理。這樣,也就加深了對這一原理的理解??傊?,對比兩種處理方式,后者更有利于數(shù)學(xué)知識的掌握和學(xué)習(xí)能力的提高。2.創(chuàng)造思維能力在運用中得到增長運用變通性方式改錯,不僅有利于學(xué)習(xí)能力的提高,也有利于創(chuàng)造思維能力的增長。變通性改錯方式,加大了思維難度,是進(jìn)行發(fā)散思維而獲得的結(jié)果。當(dāng)然,這也不是唯一的結(jié)果。更為重要的是:原來被認(rèn)為解法唯一,現(xiàn)在變成無窮了。這就啟發(fā)我們提出問題:1)數(shù)學(xué)概念和數(shù)學(xué)原理統(tǒng)統(tǒng)都是永恒不變的嗎?其表述方式是唯一的嗎?(2)被認(rèn)為只有一種解答方法的數(shù)學(xué)題是統(tǒng)統(tǒng)都不會有第2、第3種

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論