版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
兩條直線的平行與垂直的判定課件兩條直線的平行與垂直的判定課件復(fù)習(xí)直線的傾斜角
斜率
斜率公式定義范圍三要素復(fù)習(xí)直線的傾斜角斜率斜率公式定義三要素一、提問:*平面內(nèi)兩直線有哪幾種位置關(guān)系?*初中的平面幾何里,兩直線平行或垂直怎么判定?兩直線平行或垂直又有什么性質(zhì)?你知道用什么來刻畫直線的傾斜程度嗎?那能否用傾斜角,斜率來刻畫兩條直線的位置關(guān)系呢?一、提問:*平面內(nèi)兩直線有哪幾種位置關(guān)系?*初中的平面幾(1)它們的傾斜角如何?(2)那他們的斜率呢?二、探究引入:顯然
(1)(2)反之成立嗎?
xOyl2l1α1α2(1)它們的傾斜角如何?(2)那他們的斜率呢?二設(shè)兩條不重合的直線l1、l2的斜率分別為k1、k2.xOyl2l1α1α2結(jié)論1:對于兩條不重合的直線l1、l2,其斜率分別為k1、k2,有l(wèi)1∥l2k1=k2.兩條直線平行的判定設(shè)兩條不重合的直線l1、l2的斜率分別為k1、k2.xOyl(3)若兩條不重合的直線的斜率都不存在,它們平行嗎?(1)若兩條直線的斜率相等,這兩條直線一定平行嗎?思考(2)若兩條直線平行,則它們的斜率一定相等嗎?(×)(×)平行(3)若兩條不重合的直線的斜率都不存在,它們思考(2)若兩條例題講解例3、已知A(2,3),B(-4,0),P(-3,1),Q(-1,2),試判斷直線BA與PQ的位置關(guān)系,并證明你的結(jié)論。OxyABPQ∥例題講解例3、已知A(2,3),B(-4,0),P(-3,1
例4.
已知四邊形ABCD的四個頂點(diǎn)分別為A(0,0),B(2,-1),C(4,2),D(2,3),試判斷四邊形ABCD的形狀,并給出證明。OxyDCAB∥∥例題講解例4.已知四邊形ABCD的四個頂點(diǎn)分別為A(0,0
己知三點(diǎn)A(1,2),B(-1,0),C(3,4)這三點(diǎn)是否在同一條直線上,為什么?練習(xí)1因?yàn)閗AB=1,kAC=1所以kAB=kAC解:又因?yàn)橹本€AB和AC有公共點(diǎn)A,所以這三點(diǎn)在同一條直線上己知三點(diǎn)A(1,2),B(-1,0),C(3,4設(shè)兩條直線l1、l2的傾斜角分別為α1、α2(α1,α2≠90°).xOyl2l1α1α2結(jié)論2:如果兩條直線l1、l2都有斜率,且分別為k1、k2,則有l(wèi)1⊥l2k1k2=-1.如圖,若且直線與的傾斜角分別為與,問與的關(guān)系?呢?α1α2α1α2設(shè)兩條直線l1、l2的傾斜角分別為α1、α2(α1,α2≠例5、已知A(-6,0),B(3,6),P(0,3)Q(6,-6),判斷直線AB與PQ的位置關(guān)系。例題講解例5、已知A(-6,0),B(3,6),P(0,3)Q(6例題講解例6、已知A(5,-1),B(1,1),C(2,3)三點(diǎn),試判斷△ABC的形狀。OxyACB例題講解例6、已知A(5,-1),B(1,1),C(2,3)
若兩條直線中,一條沒有斜率,另一條的斜率為零,它們的位置關(guān)系也是垂直.思考若兩條直線的斜率之積為-1,這兩條直線一定垂直嗎?(√)(×)(2)若兩條直線垂直,則它們的斜率之積一定為-1嗎?若兩條直線中,一條沒有斜率,另一條的斜率為零,思考若
例2、已知A(5,-1),B(1,1),C(2,3)三點(diǎn),試判斷△ABC的形狀。OxyACB例題講解例2、已知A(5,-1),B(1,1),C(2,3)三兩條直線的平行與垂直的判定課件兩條直線的平行與垂直的判定課件復(fù)習(xí)直線的傾斜角
斜率
斜率公式定義范圍三要素復(fù)習(xí)直線的傾斜角斜率斜率公式定義三要素一、提問:*平面內(nèi)兩直線有哪幾種位置關(guān)系?*初中的平面幾何里,兩直線平行或垂直怎么判定?兩直線平行或垂直又有什么性質(zhì)?你知道用什么來刻畫直線的傾斜程度嗎?那能否用傾斜角,斜率來刻畫兩條直線的位置關(guān)系呢?一、提問:*平面內(nèi)兩直線有哪幾種位置關(guān)系?*初中的平面幾(1)它們的傾斜角如何?(2)那他們的斜率呢?二、探究引入:顯然
(1)(2)反之成立嗎?
xOyl2l1α1α2(1)它們的傾斜角如何?(2)那他們的斜率呢?二設(shè)兩條不重合的直線l1、l2的斜率分別為k1、k2.xOyl2l1α1α2結(jié)論1:對于兩條不重合的直線l1、l2,其斜率分別為k1、k2,有l(wèi)1∥l2k1=k2.兩條直線平行的判定設(shè)兩條不重合的直線l1、l2的斜率分別為k1、k2.xOyl(3)若兩條不重合的直線的斜率都不存在,它們平行嗎?(1)若兩條直線的斜率相等,這兩條直線一定平行嗎?思考(2)若兩條直線平行,則它們的斜率一定相等嗎?(×)(×)平行(3)若兩條不重合的直線的斜率都不存在,它們思考(2)若兩條例題講解例3、已知A(2,3),B(-4,0),P(-3,1),Q(-1,2),試判斷直線BA與PQ的位置關(guān)系,并證明你的結(jié)論。OxyABPQ∥例題講解例3、已知A(2,3),B(-4,0),P(-3,1
例4.
已知四邊形ABCD的四個頂點(diǎn)分別為A(0,0),B(2,-1),C(4,2),D(2,3),試判斷四邊形ABCD的形狀,并給出證明。OxyDCAB∥∥例題講解例4.已知四邊形ABCD的四個頂點(diǎn)分別為A(0,0
己知三點(diǎn)A(1,2),B(-1,0),C(3,4)這三點(diǎn)是否在同一條直線上,為什么?練習(xí)1因?yàn)閗AB=1,kAC=1所以kAB=kAC解:又因?yàn)橹本€AB和AC有公共點(diǎn)A,所以這三點(diǎn)在同一條直線上己知三點(diǎn)A(1,2),B(-1,0),C(3,4設(shè)兩條直線l1、l2的傾斜角分別為α1、α2(α1,α2≠90°).xOyl2l1α1α2結(jié)論2:如果兩條直線l1、l2都有斜率,且分別為k1、k2,則有l(wèi)1⊥l2k1k2=-1.如圖,若且直線與的傾斜角分別為與,問與的關(guān)系?呢?α1α2α1α2設(shè)兩條直線l1、l2的傾斜角分別為α1、α2(α1,α2≠例5、已知A(-6,0),B(3,6),P(0,3)Q(6,-6),判斷直線AB與PQ的位置關(guān)系。例題講解例5、已知A(-6,0),B(3,6),P(0,3)Q(6例題講解例6、已知A(5,-1),B(1,1),C(2,3)三點(diǎn),試判斷△ABC的形狀。OxyACB例題講解例6、已知A(5,-1),B(1,1),C(2,3)
若兩條直線中,一條沒有斜率,另一條的斜率為零,它們的位置關(guān)系也是垂直.思考若兩條直線的斜率之積為-1,這兩條直線一定垂直
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 房地產(chǎn)買賣協(xié)議范例(2024年度)
- 2024公司物流運(yùn)輸業(yè)務(wù)協(xié)議
- 2024年磚購銷協(xié)議格式
- 2024年拆除工程中介服務(wù)協(xié)議
- 2024年區(qū)域合作銷售協(xié)議模板
- 2024年度汽車租賃業(yè)務(wù)協(xié)議樣本
- 飯店廚房托管協(xié)議精簡2024適用
- 新時代背景下教師教育轉(zhuǎn)型的實(shí)施方案與策略
- 吊車租賃正規(guī)協(xié)議2024細(xì)化
- 2024砌墻工程施工人員服務(wù)協(xié)議
- 2024-2030年中國再生金屬行業(yè)發(fā)展形勢及十三五規(guī)模研究報告
- 機(jī)床功能部件行業(yè)發(fā)展趨勢
- 河南省信陽市2024-2025學(xué)年 七年級上學(xué)期數(shù)學(xué)期中測試卷
- 線上教學(xué)工作簡報(30篇)
- 青海省西寧市海湖中學(xué)2024-2025學(xué)年高一上學(xué)期期中考試生物試卷
- 光伏安裝工程結(jié)算協(xié)議書范文
- 中國物聯(lián)網(wǎng)安全行業(yè)市場現(xiàn)狀、前景分析研究報告(智研咨詢發(fā)布)
- 【“雙減”案例】學(xué)校落實(shí)“雙減”提質(zhì)減負(fù)經(jīng)驗(yàn)總結(jié)五篇
- 開發(fā)商如何管控施工單位“工抵房”法律風(fēng)險
- 術(shù)前病例討論模板
- 濟(jì)南2024年山東濟(jì)南市文化和旅游局所屬事業(yè)單位招聘人選筆試歷年典型考題及考點(diǎn)附答案解析
評論
0/150
提交評論