版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
四川省仁壽縣2023學年中考數(shù)學最后一模試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、測試卷卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.一元二次方程(x+3)(x-7)=0的兩個根是A.x1=3,x2=-7B.x1=3,x2=7C.x1=-3,x2=7D.x1=-3,x2=-72.如圖,在△ABC中,AC⊥BC,∠ABC=30°,點D是CB延長線上的一點,且BD=BA,則tan∠DAC的值為()A. B.2 C. D.33.如圖,梯形ABCD中,AD∥BC,AB=DC,DE∥AB,下列各式正確的是()A. B. C. D.4.已知一組數(shù)據(jù),,,,的平均數(shù)是2,方差是,那么另一組數(shù)據(jù),,,,,的平均數(shù)和方差分別是.A. B. C. D.5.如圖,Rt△ABC中,∠C=90°,∠A=35°,點D在邊BC上,BD=2CD.把△ABC繞著點D逆時針旋轉(zhuǎn)m(0<m<180)度后,如果點B恰好落在初始Rt△ABC的邊上,那么m=()A.35° B.60° C.70° D.70°或120°6.如圖,⊙O的直徑AB=2,C是弧AB的中點,AE,BE分別平分∠BAC和∠ABC,以E為圓心,AE為半徑作扇形EAB,π取3,則陰影部分的面積為()A.﹣4 B.7﹣4 C.6﹣ D.7.如圖是反比例函數(shù)(k為常數(shù),k≠0)的圖象,則一次函數(shù)的圖象大致是()A. B. C. D.8.長江經(jīng)濟帶覆蓋上海、江蘇、浙江、安徽、江西、湖北、湖南、重慶、四川、云南、貴州等11省市,面積約2050000平方公里,約占全國面積的21%.將2050000用科學記數(shù)法表示應(yīng)為()A.205萬 B. C. D.9.若,代數(shù)式的值是A.0 B. C.2 D.10.2017年“智慧天津”建設(shè)成效顯著,互聯(lián)網(wǎng)出口帶寬達到17200吉比特每秒.將17200用科學記數(shù)法表示應(yīng)為()A.172×102 B.17.2×103 C.1.72×104 D.0.172×10511.小蘇和小林在如圖①所示的跑道上進行米折返跑.在整個過程中,跑步者距起跑線的距離(單位:)與跑步時間(單位:)的對應(yīng)關(guān)系如圖②所示.下列敘述正確的是().A.兩人從起跑線同時出發(fā),同時到達終點B.小蘇跑全程的平均速度大于小林跑全程的平均速度C.小蘇前跑過的路程大于小林前跑過的路程D.小林在跑最后的過程中,與小蘇相遇2次12.方程的根是()A.x=2 B.x=0 C.x1=0,x2=-2 D.x1=0,x2=2二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,直線x=2與反比例函數(shù)和的圖象分別交于A、B兩點,若點P是y軸上任意一點,則△PAB的面積是_____.14.數(shù)據(jù):2,5,4,2,2的中位數(shù)是_____,眾數(shù)是_____,方差是_____.15.不等式組的解集為________.16.如圖,在△ABC中,∠C=120°,AB=4cm,兩等圓⊙A與⊙B外切,則圖中兩個扇形的面積之和(即陰影部分)為cm2(結(jié)果保留π).17.如圖,小軍、小珠之間的距離為2.7m,他們在同一盞路燈下的影長分別為1.8m,1.5m,已知小軍、小珠的身高分別為1.8m,1.5m,則路燈的高為____m.18.分解因式:xy2﹣2xy+x=_____.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)解不等式組,并寫出其所有的整數(shù)解.20.(6分)解不等式:3x﹣1>2(x﹣1),并把它的解集在數(shù)軸上表示出來.21.(6分)如圖,港口B位于港口A的南偏東37°方向,燈塔C恰好在AB的中點處,一艘海輪位于港口A的正南方向,港口B的正西方向的D處,它沿正北方向航行5km到達E處,測得燈塔C在北偏東45°方向上,這時,E處距離港口A有多遠?(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)22.(8分)已知:如圖,在正方形ABCD中,點E、F分別在BC和CD上,AE=AF.求證:BE=DF;連接AC交EF于點O,延長OC至點M,使OM=OA,連接EM、FM.判斷四邊形AEMF是什么特殊四邊形?并證明你的結(jié)論.23.(8分)如圖中的小方格都是邊長為1的正方形,△ABC的頂點和O點都在正方形的頂點上.以點O為位似中心,在方格圖中將△ABC放大為原來的2倍,得到△A′B′C′;△A′B′C′繞點B′順時針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后得到的△A″B′C″,并求邊A′B′在旋轉(zhuǎn)過程中掃過的圖形面積.24.(10分)如圖,已知△ABC,分別以AB,AC為直角邊,向外作等腰直角三角形ABE和等腰直角三角形ACD,∠EAB=∠DAC=90°,連結(jié)BD,CE交于點F,設(shè)AB=m,BC=n.(1)求證:∠BDA=∠ECA.(2)若m=,n=3,∠ABC=75°,求BD的長.(3)當∠ABC=____時,BD最大,最大值為____(用含m,n的代數(shù)式表示)(4)試探究線段BF,AE,EF三者之間的數(shù)量關(guān)系。25.(10分)在一個不透明的盒子中,裝有3個分別寫有數(shù)字1,2,3的小球,他們的形狀、大小、質(zhì)地完全相同,攪拌均勻后,先從盒子里隨機抽取1個小球,記下小球上的數(shù)字后放回盒子,攪拌均勻后再隨機取出1個小球,再記下小球上的數(shù)字.(1)用列表法或樹狀圖法寫出所有可能出現(xiàn)的結(jié)果;(2)求兩次取出的小球上的數(shù)字之和為奇數(shù)的概率P.26.(12分)我省有關(guān)部門要求各中小學要把“陽光體育”寫入課表,為了響應(yīng)這一號召,某校圍繞著“你最喜歡的體育活動項目是什么?(只寫一項)”的問題,對在校學生進行了隨機抽樣調(diào)查,從而得到一組數(shù)據(jù),如圖1是根據(jù)這組數(shù)據(jù)繪制的條形統(tǒng)計圖,請結(jié)合統(tǒng)計圖回答下列問題:該校對多少名學生進行了抽樣調(diào)查?本次抽樣調(diào)查中,最喜歡足球活動的有多少人?占被調(diào)查人數(shù)的百分比是多少?若該校九年級共有400名學生,圖2是根據(jù)各年級學生人數(shù)占全校學生總?cè)藬?shù)的百分比繪制的扇形統(tǒng)計圖,請你估計全校學生中最喜歡籃球活動的人數(shù)約為多少?27.(12分)如圖,在△ABC中,∠A=45°,以AB為直徑的⊙O經(jīng)過AC的中點D,E為⊙O上的一點,連接DE,BE,DE與AB交于點F.求證:BC為⊙O的切線;若F為OA的中點,⊙O的半徑為2,求BE的長.
2023學年模擬測試卷參考答案(含詳細解析)一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【答案解析】
根據(jù)因式分解法直接求解即可得.【題目詳解】∵(x+3)(x﹣7)=0,∴x+3=0或x﹣7=0,∴x1=﹣3,x2=7,故選C.【答案點睛】本題考查了解一元二次方程——因式分解法,根據(jù)方程的特點選擇恰當?shù)姆椒ㄟM行求解是解題的關(guān)鍵.2、A【答案解析】
設(shè)AC=a,由特殊角的三角函數(shù)值分別表示出BC、AB的長度,進而得出BD、CD的長度,由公式求出tan∠DAC的值即可.【題目詳解】設(shè)AC=a,則BC==a,AB==2a,∴BD=BA=2a,∴CD=(2+)a,∴tan∠DAC=2+.故選A.【答案點睛】本題主要考查特殊角的三角函數(shù)值.3、D【答案解析】∵AD//BC,DE//AB,∴四邊形ABED是平行四邊形,∴,,∴選項A、C錯誤,選項D正確,選項B錯誤,故選D.4、D【答案解析】
根據(jù)數(shù)據(jù)的變化和其平均數(shù)及方差的變化規(guī)律求得新數(shù)據(jù)的平均數(shù)及方差即可.【題目詳解】解:∵數(shù)據(jù)x1,x2,x3,x4,x5的平均數(shù)是2,∴數(shù)據(jù)3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的平均數(shù)是3×2-2=4;∵數(shù)據(jù)x1,x2,x3,x4,x5的方差為,∴數(shù)據(jù)3x1,3x2,3x3,3x4,3x5的方差是×32=3,∴數(shù)據(jù)3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的方差是3,故選D.【答案點睛】本題考查了方差的知識,說明了當數(shù)據(jù)都加上一個數(shù)(或減去一個數(shù))時,平均數(shù)也加或減這個數(shù),方差不變,即數(shù)據(jù)的波動情況不變;當數(shù)據(jù)都乘以一個數(shù)(或除以一個數(shù))時,平均數(shù)也乘以或除以這個數(shù),方差變?yōu)檫@個數(shù)的平方倍.5、D【答案解析】
①當點B落在AB邊上時,根據(jù)DB=DB1,即可解決問題,②當點B落在AC上時,在RT△DCB2中,根據(jù)∠C=90°,DB2=DB=2CD可以判定∠CB2D=30°,由此即可解決問題.【題目詳解】①當點B落在AB邊上時,∵DB=DB∴∠B=∠DB∴m=∠BDB②當點B落在AC上時,在RT△DCB∵∠C=90°,DB∴∠CB∴m=∠C+∠CB故選D.【答案點睛】本題考查的知識點是旋轉(zhuǎn)的性質(zhì),解題關(guān)鍵是考慮多種情況,進行分類討論.6、A【答案解析】∵O的直徑AB=2,∴∠C=90°,∵C是弧AB的中點,∴,∴AC=BC,∴∠CAB=∠CBA=45°,∵AE,BE分別平分∠BAC和∠ABC,∴∠EAB=∠EBA=22.5°,∴∠AEB=180°?(∠BAC+∠CBA)=135°,連接EO,∵∠EAB=∠EBA,∴EA=EB,∵OA=OB,∴EO⊥AB,∴EO為Rt△ABC內(nèi)切圓半徑,∴S△ABC=(AB+AC+BC)?EO=AC?BC,∴EO=?1,∴AE2=AO2+EO2=12+(?1)2=4?2,∴扇形EAB的面積==,△ABE的面積=AB?EO=?1,∴弓形AB的面積=扇形EAB的面積?△ABE的面積=,∴陰影部分的面積=O的面積?弓形AB的面積=?()=?4,故選:A.7、B【答案解析】根據(jù)圖示知,反比例函數(shù)的圖象位于第一、三象限,∴k>0,∴一次函數(shù)y=kx?k的圖象與y軸的交點在y軸的負半軸,且該一次函數(shù)在定義域內(nèi)是增函數(shù),∴一次函數(shù)y=kx?k的圖象經(jīng)過第一、三、四象限;故選:B.8、C【答案解析】【分析】科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【題目詳解】2050000將小數(shù)點向左移6位得到2.05,所以2050000用科學記數(shù)法表示為:20.5×106,故選C.【答案點睛】本題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.9、D【答案解析】
由可得,整體代入到原式即可得出答案.【題目詳解】解:,
,
則原式.
故選:D.【答案點睛】本題主要考查整式的化簡求值,熟練掌握整式的混合運算順序和法則及代數(shù)式的求值是解題的關(guān)鍵.10、C【答案解析】
科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【題目詳解】解:將17200用科學記數(shù)法表示為1.72×1.
故選C.【答案點睛】此題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.11、D【答案解析】
A.由圖可看出小林先到終點,A錯誤;B.全程路程一樣,小林用時短,所以小林的平均速度大于小蘇的平均速度,B錯誤;C.第15秒時,小蘇距離起點較遠,兩人都在返回起點的過程中,據(jù)此可判斷小林跑的路程大于小蘇跑的路程,C錯誤;D.由圖知兩條線的交點是兩人相遇的點,所以是相遇了兩次,正確.故選D.12、C【答案解析】測試卷解析:x(x+1)=0,
?x=0或x+1=0,
解得x1=0,x1=-1.
故選C.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、.【答案解析】
解:∵把x=1分別代入、,得y=1、y=,∴A(1,1),B(1,).∴.∵P為y軸上的任意一點,∴點P到直線BC的距離為1.∴△PAB的面積.故答案為:.14、221.1.【答案解析】
先將這組數(shù)據(jù)從小到大排列,再找出最中間的數(shù),即可得出中位數(shù);找出這組數(shù)據(jù)中最多的數(shù)則是眾數(shù);先求出這組數(shù)據(jù)的平均數(shù),再根據(jù)方差公式S2=[(x1-)2+(x2-)2+…+(xn-)2]進行計算即可.【題目詳解】解:把這組數(shù)據(jù)從小到大排列為:2,2,2,4,5,最中間的數(shù)是2,則中位數(shù)是2;眾數(shù)為2;∵這組數(shù)據(jù)的平均數(shù)是(2+2+2+4+5)÷5=3,∴方差是:[(2?3)2+(2?3)2+(2?3)2+(4?3)2+(5?3)2]=1.1.故答案為2,2,1.1.【答案點睛】本題考查了中位數(shù)、眾數(shù)與方差的定義,解題的關(guān)鍵是熟練的掌握中位數(shù)、眾數(shù)與方差的定義.15、x>1【答案解析】
分別求出兩個不等式的解集,再求其公共解集.【題目詳解】,解不等式①,得:x>1,解不等式②,得:x>-3,所以不等式組的解集為:x>1,故答案為:x>1.【答案點睛】本題考查一元一次不等式組的解法,屬于基礎(chǔ)題.求不等式組的解集,要遵循以下原則:同大取較大,同小取較小,小大大小中間找,大大小小解不了.16、.【答案解析】
圖中陰影部分的面積就是兩個扇形的面積,圓A,B的半徑為2cm,則根據(jù)扇形面積公式可得陰影面積.【題目詳解】(cm2).故答案為.考點:1、扇形的面積公式;2、兩圓相外切的性質(zhì).17、3【答案解析】測試卷分析:如圖,∵CD∥AB∥MN,∴△ABE∽△CDE,△ABF∽△MNF,∴,即,解得:AB=3m,答:路燈的高為3m.考點:中心投影.18、x(y-1)2【答案解析】分析:先提公因式x,再用完全平方公式把繼續(xù)分解.詳解:=x()=x()2.故答案為x()2.點睛:本題考查了因式分解,有公因式先提公因式,然后再用公式法繼續(xù)分解,因式分解必須分解到每個因式都不能再分解為止.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、不等式組的解集為1≤x<2,該不等式組的整數(shù)解為1,2,1.【答案解析】
先求出不等式組的解集,即可求得該不等式組的整數(shù)解.【題目詳解】由①得,x≥1,由②得,x<2.所以不等式組的解集為1≤x<2,該不等式組的整數(shù)解為1,2,1.【答案點睛】本題考查的是解一元一次不等式組及求一元一次不等式組的整數(shù)解,求不等式的公共解,要遵循以下原則:同大取較大,同小取較小,小大大小中間找,大大小小解不了.20、【答案解析】測試卷分析:按照解一元一次不等式的步驟解不等式即可.測試卷解析:,,.解集在數(shù)軸上表示如下點睛:解一元一次不等式一般步驟:去分母,去括號,移項,合并同類項,把系數(shù)化為1.21、35km【答案解析】測試卷分析:如圖作CH⊥AD于H.設(shè)CH=xkm,在Rt△ACH中,可得AH=,在Rt△CEH中,可得CH=EH=x,由CH∥BD,推出,由AC=CB,推出AH=HD,可得=x+5,求出x即可解決問題.測試卷解析:如圖,作CH⊥AD于H.設(shè)CH=xkm,在Rt△ACH中,∠A=37°,∵tan37°=,∴AH=,在Rt△CEH中,∵∠CEH=45°,∴CH=EH=x,∵CH⊥AD,BD⊥AD,∴CH∥BD,∴,∵AC=CB,∴AH=HD,∴=x+5,∴x=≈15,∴AE=AH+HE=+15≈35km,∴E處距離港口A有35km.22、(1)證明見解析;(2)四邊形AEMF是菱形,證明見解析.【答案解析】
(1)求簡單的線段相等,可證線段所在的三角形全等,即證△ABE≌△ADF;(2)由于四邊形ABCD是正方形,易得∠ECO=∠FCO=45°,BC=CD;聯(lián)立(1)的結(jié)論,可證得EC=CF,根據(jù)等腰三角形三線合一的性質(zhì)可證得OC(即AM)垂直平分EF;已知OA=OM,則EF、AM互相平分,再根據(jù)一組鄰邊相等的平行四邊形是菱形,即可判定四邊形AEMF是菱形.【題目詳解】(1)證明:∵四邊形ABCD是正方形,∴AB=AD,∠B=∠D=90°,在Rt△ABE和Rt△ADF中,∵,∴Rt△ADF≌Rt△ABE(HL)∴BE=DF;(2)四邊形AEMF是菱形,理由為:證明:∵四邊形ABCD是正方形,∴∠BCA=∠DCA=45°(正方形的對角線平分一組對角),BC=DC(正方形四條邊相等),∵BE=DF(已證),∴BC-BE=DC-DF(等式的性質(zhì)),即CE=CF,在△COE和△COF中,,∴△COE≌△COF(SAS),∴OE=OF,又OM=OA,∴四邊形AEMF是平行四邊形(對角線互相平分的四邊形是平行四邊形),∵AE=AF,∴平行四邊形AEMF是菱形.23、(1)作圖見解析;(2)作圖見解析;5π(平方單位).【答案解析】
(1)連接AO、BO、CO并延長到2AO、2BO、2CO長度找到各點的對應(yīng)點,順次連接即可.(2)△A′B′C′的A′、C′繞點B′順時針旋轉(zhuǎn)90°得到對應(yīng)點,順次連接即可.A′B′在旋轉(zhuǎn)過程中掃過的圖形面積是一個扇形,根據(jù)扇形的面積公式計算即可.【題目詳解】解:(1)見圖中△A′B′C′
(2)見圖中△A″B′C″
扇形的面積(平方單位).【答案點睛】本題主要考查了位似圖形及旋轉(zhuǎn)變換作圖的方法及扇形的面積公式.24、135°m+n【答案解析】測試卷分析:(1)由已知條件證△ABD≌△AEC,即可得到∠BDA=∠CEA;(2)過點E作EG⊥CB交CB的延長線于點G,由已知條件易得∠EBG=60°,BE=2,這樣在Rt△BEG中可得EG=,BG=1,結(jié)合BC=n=3,可得GC=4,由長可得EC=,結(jié)合△ABD≌△AEC可得BD=EC=;(3)由(2)可知,BE=,BC=n,因此當E、B、C三點共線時,EC最大=BE+BC=,此時BD最大=EC最大=;(4)由△ABD≌△AEC可得∠AEC=∠ABD,結(jié)合△ABE是等腰直角三角形可得△EFB是直角三角形及BE2=2AE2,從而可得EF2=BE2-BF2=2AE2-BF2.測試卷解析:(1)∵△ABE和△ACD都是等腰直角三角形,且∠EAB=∠DAC=90°,∴AE=AB,AC=AD,∠EAB+∠BAC=∠BAC+∠DAC,即∠EAC=∠BAD,∴△EAC≌△BAD,∴∠BDA=∠ECA;(2)如下圖,過點E作EG⊥CB交CB的延長線于點G,∴∠EGB=90°,∵在等腰直角△ABE,∠BAE=90°,AB=m=,∴∠ABE=45°,BE=2,∵∠ABC=75°,∴∠EBG=180°-75°-45°=60°,∴BG=1,EG=,∴GC=BG+BC=4,∴CE=,∵△EAC≌△BAD,∴BD=EC=;(3)由(2)可知,BE=,BC=n,因此當E、B、C三點共線時,EC最大=BE+BC=,∵BD=EC,∴BD最大=EC最大=,此時∠ABC=180°-∠ABE=180°-45°=135°,即當∠ABC=135°時,BD最大=;(4)∵△ABD≌△AEC,∴∠AEC=∠ABD,∵在等腰直角△ABE中,∠AEC+∠CEB+∠ABE=90°,∴∠ABD+∠ABE+∠CEB=90°,∴∠BFE=180°-90°=90°,∴EF2+BF2=BE2,又∵在等腰Rt△ABE中,BE2=2AE2,∴2AE2=EF2+BF2.點睛:(1)解本題第2小題的關(guān)鍵是過點E作EG⊥CB的延長線于點G,即可由已知條件求得BE的長,進一步求得BG和EG的長就可在Rt△EGC中求得EC的長了,結(jié)合(1)中所證的全等三角形即可得到BD的長了;(2)解第3小題時,由題意易知,當AB和BC的值確定后,BE的值就確定了,則由題意易得當E、B、C三點共線時,EC=EB+BC=是EC的最大值了.25、(1見解析;(2).【答案解析】
(1)根據(jù)題意先畫出樹狀圖,得出所有可能出現(xiàn)的結(jié)果數(shù);
(2)根據(jù)(1)可得共有9種情況,兩次取出小球上的數(shù)字和為奇數(shù)的情況,再根據(jù)概率公式即可得出答案.【題目詳解】(1)列表得,(2)兩次取出的小球上的數(shù)字之和為奇數(shù)的共有4種,∴P兩次取出的小球上數(shù)字之和為奇數(shù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025招投標工作計劃
- 智能小車行業(yè)相關(guān)投資計劃提議
- 特種電線相關(guān)行業(yè)投資方案
- 工業(yè)淀粉相關(guān)項目投資計劃書范本
- 2025年年級教師工作計劃范文
- Unit3 Topic2. 說課稿 -2024-2025學年仁愛科普版英語八年級上冊
- 數(shù)字電視調(diào)制器相關(guān)項目投資計劃書
- 2025年鞋服市場營銷工作計劃
- 2025幼兒園工作計劃年度計劃
- 2025年少先隊大隊工作計劃范文
- 小學一年級數(shù)學20以內(nèi)的口算題(可直接打印A4)
- 腫瘤放射治療體位固定技術(shù)
- 監(jiān)理報告范本
- 店鋪交割合同范例
- 新生兒心臟病護理查房
- 規(guī)劃設(shè)計行業(yè)數(shù)字化轉(zhuǎn)型趨勢
- 物業(yè)年終總結(jié)匯報工作
- 金色簡約蛇年年終總結(jié)匯報模板
- 醫(yī)院住院病歷質(zhì)量檢查評分表(評分標準)
- 12.1 擁有積極的人生態(tài)度(教學設(shè)計)2024七年級道德與法治上冊
- 視聽說課程(《走遍美國》)教學方案
評論
0/150
提交評論