商務(wù)與經(jīng)濟統(tǒng)計第13章B課件_第1頁
商務(wù)與經(jīng)濟統(tǒng)計第13章B課件_第2頁
商務(wù)與經(jīng)濟統(tǒng)計第13章B課件_第3頁
商務(wù)與經(jīng)濟統(tǒng)計第13章B課件_第4頁
商務(wù)與經(jīng)濟統(tǒng)計第13章B課件_第5頁
已閱讀5頁,還剩43頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

StatisticsforBusiness

andEconomicsAndersonSweeneyWilliamsSlidesbyJohnLoucksSt.Edward’sUniversityStatisticsforBusiness

andEcChapter13,PartB

ExperimentalDesignandAnalysisofVarianceFactorialExperimentRandomizedBlockDesignChapter13,PartB

ExperimentExperimentalunits

aretheobjectsofinterestintheexperiment.Acompletelyrandomizeddesign

isanexperimentaldesigninwhichthetreatmentsarerandomlyassignedtotheexperimentalunits.Iftheexperimentalunitsareheterogeneous,blockingcanbeusedtoformhomogeneousgroups,resultinginarandomizedblockdesign.RandomizedBlockDesignExperimentalunitsaretheobjForarandomizedblockdesignthesumofsquarestotal(SST)ispartitionedintothreegroups:sumofsquaresduetotreatments,sumofsquaresduetoblocks,andsumofsquaresduetoerror.ANOVAProcedureRandomizedBlockDesignSST=SSTR+SSBL+SSEThetotaldegreesoffreedom,nT-1,arepartitionedsuchthatk-1degreesoffreedomgototreatments,b-1gotoblocks,and(k-1)(b-1)gototheerrorterm.ForarandomizedblockdesignSourceofVariationSumofSquaresDegreesofFreedomMeanSquareFTreatmentsErrorTotalk-1nT-1SSTRSSESSTRandomizedBlockDesignANOVATableBlocksSSBLb-1(k–1)(b–1)p-ValueSourceofSumofDegreesofMeanFRandomizedBlockDesignExample:CrescentOilCo.

CrescentOilhasdevelopedthreenewblendsofgasolineandmustdecidewhichblendorblendstoproduceanddistribute.Astudyofthemilespergallonratingsofthethreeblendsisbeingconductedtodetermineifthemeanratingsarethesameforthethreeblends.RandomizedBlockDesignExampleRandomizedBlockDesignExample:CrescentOilCo.

Fiveautomobileshavebeentestedusingeachofthethreegasolineblendsandthemilespergallonratingsareshownonthenextslide.Factor...GasolineblendTreatments...BlendX,BlendY,BlendZBlocks...AutomobilesResponsevariable...MilespergallonRandomizedBlockDesignExampleRandomizedBlockDesign29.8 28.8 28.4TreatmentMeans1234531302933263029293125302928292630.33329.33328.66731.00025.667TypeofGasoline(Treatment)BlockMeansBlendXBlendYBlendZAutomobile(Block)RandomizedBlockDesign29.8 MeanSquareDuetoErrorRandomizedBlockDesignMSE=5.47/[(3-1)(5-1)]=.68SSE=62-5.2-51.33=5.47MSBL=51.33/(5-1)=12.8SSBL=3[(30.333-29)2+...+(25.667-29)2]=51.33MSTR=5.2/(3-1)=2.6SSTR=5[(29.8-29)2+(28.8-29)2+(28.4-29)2]=5.2Theoverallsamplemeanis29.Thus,MeanSquareDuetoTreatmentsMeanSquareDuetoBlocksMeanSquareDuetoErrorRandomSourceofVariationSumofSquaresDegreesofFreedomMeanSquareFTreatmentsErrorTotal2145.205.4762.0082.60.683.82ANOVATableRandomizedBlockDesignBlocks51.3312.804p-Value.07SourceofSumofDegreesofMeanFRejectionRuleRandomizedBlockDesignFor=.05,F.05=4.46(2d.f.numeratorand8d.f.denominator)p-ValueApproach:

RejectH0ifp-value<.05CriticalValueApproach:

RejectH0ifF

>4.46RejectionRuleRandomizedBlockConclusionRandomizedBlockDesignThereisinsufficientevidencetoconcludethatthemilespergallonratingsdifferforthethreegasolineblends.Thep-valueisgreaterthan.05(whereF=4.46)andlessthan.10(whereF=3.11).(Excelprovidesap-valueof.07).Therefore,wecannotrejectH0.F=MSTR/MSE=2.6/.68=3.82TestStatisticConclusionRandomizedBlockDesFactorialExperimentInsomeexperimentswewanttodrawconclusionsaboutmorethanonevariableorfactor.FactorialexperimentsandtheircorrespondingANOVAcomputationsarevaluabledesignswhensimultaneousconclusionsabouttwoormorefactorsarerequired.Forexample,foralevelsoffactorAandblevelsoffactorB,theexperimentwillinvolvecollectingdataonabtreatmentcombinations.Thetermfactorialisusedbecausetheexperimentalconditionsincludeallpossiblecombinationsofthefactors.FactorialExperimentInsomeexTheANOVAprocedureforthetwo-factorfactorialexperimentissimilartothecompletelyrandomizedexperimentandtherandomizedblockexperiment.ANOVAProcedureSST=SSA+SSB+SSAB+SSEThetotaldegreesoffreedom,nT-1,arepartitionedsuchthat(a–1)d.fgotoFactorA,(b–1)d.fgotoFactorB,(a–1)(b–1)d.f.gotoInteraction,andab(r–1)gotoError.Two-FactorFactorialExperimentWeagainpartitionthesumofsquarestotal(SST)intoitssources.TheANOVAprocedureforthetwSourceofVariationSumofSquaresDegreesofFreedomMeanSquareFFactorAErrorTotala-1nT-1SSASSESSTFactorBSSBb-1ab(r–1)Two-FactorFactorialExperimentInteractionSSAB(a–1)(b–1)p-ValueSourceofSumofDegreesofMeanFStep3ComputethesumofsquaresforfactorBTwo-FactorFactorialExperimentStep1ComputethetotalsumofsquaresStep2ComputethesumofsquaresforfactorAStep3ComputethesumofsqStep4ComputethesumofsquaresforinteractionTwo-FactorFactorialExperimentSSE=SST–SSA–SSB-SSABStep5ComputethesumofsquaresduetoerrorStep4ComputethesumofsqAsurveywasconductedofhourlywagesforasampleofworkersintwoindustriesatthreelocationsinOhio.Partofthepurposeofthesurveywastodetermineifdifferencesexistinbothindustrytypeandlocation.Thesampledataareshownonthenextslide.Example:StateofOhioWageSurveyTwo-FactorFactorialExperimentAsurveywasconductedofExample:StateofOhioWageSurveyTwo-FactorFactorialExperimentIndustryCincinnatiClevelandColumbusI$12.10$11.80$12.90I11.8011.2012.70I12.1012.0012.20II12.4012.6013.00II12.5012.0012.10II12.0012.5012.70Example:StateofOhioWageSFactorsTwo-FactorFactorialExperimentEachexperimentalconditionisrepeated3timesFactorB:Location(3levels)FactorA:IndustryType(2levels)ReplicationsFactorsTwo-FactorFactorialExSourceofVariationSumofSquaresDegreesofFreedomMeanSquareFFactorAErrorTotal117.501.433.49ANOVATableFactorB1.12.562Two-FactorFactorialExperimentInteraction.37.1924.691.55p-Value.06.03.25SourceofSumofDegreesofMeanFConclusionsUsingtheCriticalValueApproachTwo-FactorFactorialExperimentInteractionisnotsignificant.Interaction:F=1.55<

Fa=3.89Meanwagesdifferbylocation.Locations:F=4.69>Fa=3.89Meanwagesdonotdifferbyindustrytype.Industries:F=4.19<

Fa=4.75ConclusionsUsingtheCriticalConclusionsUsingthep-ValueApproach

Two-FactorFactorialExperimentInteractionisnotsignificant.Interaction:p-value=.25>a=.05Meanwagesdifferbylocation.Locations:p-value=.03<

a=.05Meanwagesdonotdifferbyindustrytype.Industries:p-value=.06>a=.05ConclusionsUsingthep-ValueEndofChapter13,PartBEndofChapter13,PartBStatisticsforBusiness

andEconomicsAndersonSweeneyWilliamsSlidesbyJohnLoucksSt.Edward’sUniversityStatisticsforBusiness

andEcChapter13,PartB

ExperimentalDesignandAnalysisofVarianceFactorialExperimentRandomizedBlockDesignChapter13,PartB

ExperimentExperimentalunits

aretheobjectsofinterestintheexperiment.Acompletelyrandomizeddesign

isanexperimentaldesigninwhichthetreatmentsarerandomlyassignedtotheexperimentalunits.Iftheexperimentalunitsareheterogeneous,blockingcanbeusedtoformhomogeneousgroups,resultinginarandomizedblockdesign.RandomizedBlockDesignExperimentalunitsaretheobjForarandomizedblockdesignthesumofsquarestotal(SST)ispartitionedintothreegroups:sumofsquaresduetotreatments,sumofsquaresduetoblocks,andsumofsquaresduetoerror.ANOVAProcedureRandomizedBlockDesignSST=SSTR+SSBL+SSEThetotaldegreesoffreedom,nT-1,arepartitionedsuchthatk-1degreesoffreedomgototreatments,b-1gotoblocks,and(k-1)(b-1)gototheerrorterm.ForarandomizedblockdesignSourceofVariationSumofSquaresDegreesofFreedomMeanSquareFTreatmentsErrorTotalk-1nT-1SSTRSSESSTRandomizedBlockDesignANOVATableBlocksSSBLb-1(k–1)(b–1)p-ValueSourceofSumofDegreesofMeanFRandomizedBlockDesignExample:CrescentOilCo.

CrescentOilhasdevelopedthreenewblendsofgasolineandmustdecidewhichblendorblendstoproduceanddistribute.Astudyofthemilespergallonratingsofthethreeblendsisbeingconductedtodetermineifthemeanratingsarethesameforthethreeblends.RandomizedBlockDesignExampleRandomizedBlockDesignExample:CrescentOilCo.

Fiveautomobileshavebeentestedusingeachofthethreegasolineblendsandthemilespergallonratingsareshownonthenextslide.Factor...GasolineblendTreatments...BlendX,BlendY,BlendZBlocks...AutomobilesResponsevariable...MilespergallonRandomizedBlockDesignExampleRandomizedBlockDesign29.8 28.8 28.4TreatmentMeans1234531302933263029293125302928292630.33329.33328.66731.00025.667TypeofGasoline(Treatment)BlockMeansBlendXBlendYBlendZAutomobile(Block)RandomizedBlockDesign29.8 MeanSquareDuetoErrorRandomizedBlockDesignMSE=5.47/[(3-1)(5-1)]=.68SSE=62-5.2-51.33=5.47MSBL=51.33/(5-1)=12.8SSBL=3[(30.333-29)2+...+(25.667-29)2]=51.33MSTR=5.2/(3-1)=2.6SSTR=5[(29.8-29)2+(28.8-29)2+(28.4-29)2]=5.2Theoverallsamplemeanis29.Thus,MeanSquareDuetoTreatmentsMeanSquareDuetoBlocksMeanSquareDuetoErrorRandomSourceofVariationSumofSquaresDegreesofFreedomMeanSquareFTreatmentsErrorTotal2145.205.4762.0082.60.683.82ANOVATableRandomizedBlockDesignBlocks51.3312.804p-Value.07SourceofSumofDegreesofMeanFRejectionRuleRandomizedBlockDesignFor=.05,F.05=4.46(2d.f.numeratorand8d.f.denominator)p-ValueApproach:

RejectH0ifp-value<.05CriticalValueApproach:

RejectH0ifF

>4.46RejectionRuleRandomizedBlockConclusionRandomizedBlockDesignThereisinsufficientevidencetoconcludethatthemilespergallonratingsdifferforthethreegasolineblends.Thep-valueisgreaterthan.05(whereF=4.46)andlessthan.10(whereF=3.11).(Excelprovidesap-valueof.07).Therefore,wecannotrejectH0.F=MSTR/MSE=2.6/.68=3.82TestStatisticConclusionRandomizedBlockDesFactorialExperimentInsomeexperimentswewanttodrawconclusionsaboutmorethanonevariableorfactor.FactorialexperimentsandtheircorrespondingANOVAcomputationsarevaluabledesignswhensimultaneousconclusionsabouttwoormorefactorsarerequired.Forexample,foralevelsoffactorAandblevelsoffactorB,theexperimentwillinvolvecollectingdataonabtreatmentcombinations.Thetermfactorialisusedbecausetheexperimentalconditionsincludeallpossiblecombinationsofthefactors.FactorialExperimentInsomeexTheANOVAprocedureforthetwo-factorfactorialexperimentissimilartothecompletelyrandomizedexperimentandtherandomizedblockexperiment.ANOVAProcedureSST=SSA+SSB+SSAB+SSEThetotaldegreesoffreedom,nT-1,arepartitionedsuchthat(a–1)d.fgotoFactorA,(b–1)d.fgotoFactorB,(a–1)(b–1)d.f.gotoInteraction,andab(r–1)gotoError.Two-FactorFactorialExperimentWeagainpartitionthesumofsquarestotal(SST)intoitssources.TheANOVAprocedureforthetwSourceofVariationSumofSquaresDegreesofFreedomMeanSquareFFactorAErrorTotala-1nT-1SSASSESSTFactorBSSBb-1ab(r–1)Two-FactorFactorialExperimentInteractionSSAB(a–1)(b–1)p-ValueSourceofSumofDegreesofMeanFStep3ComputethesumofsquaresforfactorBTwo-FactorFactorialExperimentStep1ComputethetotalsumofsquaresStep2ComputethesumofsquaresforfactorAStep3ComputethesumofsqStep4ComputethesumofsquaresforinteractionTwo-FactorFactorialExperimentSSE=SST–SSA–SSB-SSABStep5ComputethesumofsquaresduetoerrorStep4ComputethesumofsqAsurveywasconductedofhourlywagesforasampleofworkersintwoindustriesatthreelocationsinOhio.Partofthepurposeofthesurveywastodetermineifdifferencesexistinbothindustrytypeandlocation.Thesampledataareshownonthenextslide.Example:StateofOhioWageSurveyTwo-FactorFactorialExperimentAsurveywasconductedofExample:StateofOhioWageSurveyTwo-Fact

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論