版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.下表是二次函數(shù)的的部分對應(yīng)值:············則對于該函數(shù)的性質(zhì)的判斷:①該二次函數(shù)有最小值;②不等式的解集是或③方程的實(shí)數(shù)根分別位于和之間;④當(dāng)時,函數(shù)值隨的增大而增大;其中正確的是:A.①②③ B.②③ C.①② D.①③④2.已知,則等于()A.2 B.3 C. D.3.如圖,O是坐標(biāo)原點(diǎn),菱形OABC的頂點(diǎn)A的坐標(biāo)為(3,﹣4),頂點(diǎn)C在x軸的正半軸上,函數(shù)y=(k<0)的圖象經(jīng)過點(diǎn)B,則k的值為()A.﹣12 B.﹣32 C.32 D.﹣364.在正方形ABCD中,AB=3,點(diǎn)E在邊CD上,且DE=1,將△ADE沿AE對折到△AFE,延長EF交邊BC于點(diǎn)G,連接AG,CF.下列結(jié)論,其中正確的有()個.(1)CG=FG;(2)∠EAG=45°;(3)S△EFC=;(4)CF=GEA.1 B.2 C.3 D.45.如圖,已知是的直徑,,則的度數(shù)為()A. B. C. D.6.如圖,兩個菱形,兩個等邊三角形,兩個矩形,兩個正方形,各成一組,每組中的一個圖形在另一個圖形的內(nèi)部,對應(yīng)邊平行,且對應(yīng)邊之間的距離都相等,那么兩個圖形不相似的一組是()A. B. C. D.7.如圖,AB為⊙O的直徑,PD切⊙O于點(diǎn)C,交AB的延長線于D,且CO=CD,則∠PCA=()A.30° B.45° C.60° D.67.5°8.若關(guān)于x的方程(m﹣2)x2+mx﹣1=0是一元二次方程,則m的取值范圍是()A.m≠2 B.m=2 C.m≥2 D.m≠09.判斷一元二次方程是否有實(shí)數(shù)解,計(jì)算的值是()A. B. C. D.10.在中,,垂足為D,則下列比值中不等于的是()A. B. C. D.二、填空題(每小題3分,共24分)11.如圖,在平面直角坐標(biāo)系中,直線l的函數(shù)表達(dá)式為,點(diǎn)的坐標(biāo)為(1,0),以為圓心,為半徑畫圓,交直線于點(diǎn),交軸正半軸于點(diǎn),以為圓心,為半徑的畫圓,交直線于點(diǎn),交軸的正半軸于點(diǎn),以為圓心,為半徑畫圓,交直線與點(diǎn),交軸的正半軸于點(diǎn),…按此做法進(jìn)行下去,其中弧的長為_______.12.如果兩個相似三角形的對應(yīng)角平分線之比為2:5,較小三角形面積為8平方米,那么較大三角形的面積為_____________平方米.13.如圖,點(diǎn)O是△ABC的內(nèi)切圓的圓心,若∠A=100°,則∠BOC為_____.14.如圖,是的外接圓,是的中點(diǎn),連結(jié),其中與交于點(diǎn).寫出圖中所有與相似的三角形:________.15.方程x(x﹣5)=0的根是_____.16.在平面直角坐標(biāo)系中,將點(diǎn)A(﹣3,2)向右平移3個單位長度,再向下平移2個單位長度,那么平移后對應(yīng)的點(diǎn)A′的坐標(biāo)是_____.17.如圖,正方形的邊長為,在邊上分別取點(diǎn),,在邊上分別取點(diǎn),使.....依次規(guī)律繼續(xù)下去,則正方形的面積為__________.18.對于任意非零實(shí)數(shù)a、b,定義運(yùn)算“”,使下列式子成立:,,,,…,則ab=.三、解答題(共66分)19.(10分)如圖,在中,,,點(diǎn)在的內(nèi)部,經(jīng)過,兩點(diǎn),交于點(diǎn),連接并延長交于點(diǎn),以,為鄰邊作.(1)判斷與的位置關(guān)系,并說明理由.(2)若點(diǎn)是的中點(diǎn),的半徑為2,求的長.20.(6分)已知,如圖,在Rt△ABC中,∠BAC=90°,∠ABC=45°,點(diǎn)D為直線BC上一動點(diǎn)(點(diǎn)D不與點(diǎn)B,C重合).以AD為邊作正方形ADEF,連接CF,當(dāng)點(diǎn)D在線段BC的反向延長線上,且點(diǎn)A,F(xiàn)分別在直線BC的兩側(cè)時.(1)求證:△ABD≌△ACF;(2)若正方形ADEF的邊長為,對角線AE,DF相交于點(diǎn)O,連接OC,求OC的長度.21.(6分)如圖,半圓O的直徑AB=10,將半圓O繞點(diǎn)B順時針旋轉(zhuǎn)45°得到半圓O′,與AB交于點(diǎn)P,求AP的長.22.(8分)如圖,已知是的直徑,是的弦,點(diǎn)在外,連接,的平分線交于點(diǎn).(1)若,求證:是的切線;(2)若,,求弦的長.23.(8分)計(jì)算:2cos60°+4sin60°?tan30°﹣cos45°24.(8分)如圖所示,某數(shù)學(xué)活動小組選定測量小河對岸大樹BC的高度,他們在斜坡上D處測得大樹頂端B的仰角是30°,朝大樹方向下坡走6米到達(dá)坡底A處,在A處測得大樹頂端B的仰角是45°,若坡角∠FAE=30°,求大樹的高度(結(jié)果保留根號).25.(10分)如圖,在某建筑物上,掛著“緣分天注定,悠然在潛山”的宣傳條幅,小明站在點(diǎn)處,看條幅頂端,測得仰角為,再往條幅方向前行30米到達(dá)點(diǎn)處,看到條幅頂端,測得仰角為,求宣傳條幅的長.(注:不計(jì)小明的身高,結(jié)果精確到1米,參考數(shù)據(jù),)26.(10分)為了測量豎直旗桿的高度,某數(shù)學(xué)興趣小組在地面上的點(diǎn)處豎直放了一根標(biāo)桿,并在地面上放置一塊平面鏡,已知旗桿底端點(diǎn)、點(diǎn)、點(diǎn)在同一條直線上.該興趣小組在標(biāo)桿頂端點(diǎn)恰好通過平面鏡觀測到旗桿頂點(diǎn),在點(diǎn)觀測旗桿頂點(diǎn)的仰角為.觀測點(diǎn)的俯角為,已知標(biāo)桿的長度為米,問旗桿的高度為多少米?(結(jié)果保留根號)
參考答案一、選擇題(每小題3分,共30分)1、A【分析】由表知和,的值相等可以得出該二次函數(shù)的對稱軸、二次函數(shù)的增減性、從而判定出以及函數(shù)的最值情況,再結(jié)合這些圖像性質(zhì)對不等式的解集和方程解的范圍進(jìn)行判斷即可得出答案.【詳解】解:∵當(dāng)時,;當(dāng)時,;當(dāng)時,;當(dāng)時,∴二次函數(shù)的對稱軸為直線:∴結(jié)合表格數(shù)據(jù)有:當(dāng)時,隨的增大而增大;當(dāng)時,隨的增大而減小∴,即二次函數(shù)有最小值;∴①正確,④錯誤;∵由表格可知,不等式的解集是或∴②正確;∵由表格可知,方程的實(shí)數(shù)根分別位于和之間∴③正確.故選:A【點(diǎn)睛】本題主要考查二次函數(shù)的性質(zhì)如:由對稱性來求出對稱軸、由增減性來判斷的正負(fù)以及最值情況、利用圖像特征來判斷不等式的解集或方程解的范圍等.2、D【詳解】∵2x=3y,∴.故選D.3、B【解析】解:∵O是坐標(biāo)原點(diǎn),菱形OABC的頂點(diǎn)A的坐標(biāo)為(3,﹣4),頂點(diǎn)C在x軸的正半軸上,∴OA=5,AB∥OC,∴點(diǎn)B的坐標(biāo)為(8,﹣4),∵函數(shù)y=(k<0)的圖象經(jīng)過點(diǎn)B,∴﹣4=,得k=﹣32.故選B.【點(diǎn)睛】本題主要考查菱形的性質(zhì)和用待定系數(shù)法求反函數(shù)的系數(shù),解此題的關(guān)鍵在于根據(jù)A點(diǎn)坐標(biāo)求得OA的長,再根據(jù)菱形的性質(zhì)求得B點(diǎn)坐標(biāo),然后用待定系數(shù)法求得反函數(shù)的系數(shù)即可.4、C【分析】(1)根據(jù)翻折可得AD=AF=AB=3,進(jìn)而可以證明△ABG≌△AFG,再設(shè)CG=x,利用勾股定理可求得x的值,即可證明CG=FG;(2)由(1)△ABG≌△AFG,可得∠BAG=∠FAG,進(jìn)而可得∠EAG=45°;(3)過點(diǎn)F作FH⊥CE于點(diǎn)H,可得FH∥CG,通過對應(yīng)邊成比例可求得FH的長,進(jìn)而可求得S△EFC=;(4)根據(jù)(1)求得的x的長與EF不相等,進(jìn)而可以判斷CF≠GE.【詳解】解:如圖所示:(1)∵四邊形ABCD為正方形,∴AD=AB=BC=CD=3,∠BAD=∠B=∠BCD=∠D=90°,由折疊可知:AF=AD=3,∠AFE=∠D=90°,DE=EF=1,則CE=2,∴AB=AF=3,AG=AG,∴Rt△ABG≌Rt△AFG(HL),∴BG=FG,設(shè)CG=x,則BG=FG=3﹣x,∴EG=4﹣x,EC=2,根據(jù)勾股定理,得在Rt△EGC中,(4﹣x)2=x2+4,解得x=,則3﹣x=,∴CG=FG,所以(1)正確;(2)由(1)中Rt△ABG≌Rt△AFG(HL),∴∠BAG=∠FAG,又∠DAE=∠FAE,∴∠BAG+∠FAG+∠DAE+∠FAE=90°,∴∠EAG=45°,所以(2)正確;(3)過點(diǎn)F作FH⊥CE于點(diǎn)H,∴FH∥BC,∴,即1:(+1)=FH:(),∴FH=,∴S△EFC=×2×=,所以(3)正確;(4)∵GF=,EF=1,點(diǎn)F不是EG的中點(diǎn),CF≠GE,所以(4)錯誤.所以(1)、(2)、(3)正確.故選:C.【點(diǎn)睛】此題考查正方形的性質(zhì),翻折的性質(zhì),全等三角形的判定及性質(zhì),勾股定理求線段長度,平行線分線段成比例,正確掌握各知識點(diǎn)并運(yùn)用解題是關(guān)鍵.5、B【分析】根據(jù)同弧所對的圓周角相等可得∠E=∠B=40°,再根據(jù)直徑所對的圓周角是直角得到∠ACE=90°,最后根據(jù)直角三角形兩銳角互余可得結(jié)論.【詳解】∵在⊙O中,∠E與∠B所對的弧是,∴∠E=∠B=40°,∵AE是⊙O的直徑,∴∠ACE=90°,∴∠AEC=90°-∠E=90°-40°=50°,故選:B.【點(diǎn)睛】此題主要考查了圓周角定理以及直徑所對的圓周角是直角和直角三角形兩銳角互余等知識,求出∠E=40°,是解此題的關(guān)鍵.6、C【分析】根據(jù)相似多邊形的性質(zhì)逐一進(jìn)行判斷即可得答案.【詳解】由題意得,A.菱形四條邊均相等,所以對應(yīng)邊成比例,對應(yīng)邊平行,所以角也相等,所以兩個菱形相似,B.等邊三角形對應(yīng)角相等,對應(yīng)邊成比例,所以兩個等邊三角形相似;C.矩形四個角相等,但對應(yīng)邊不一定成比例,所以B中矩形不是相似多邊形D.正方形四條邊均相等,所以對應(yīng)邊成比例,四個角也相等,所以兩個正方形相似;故選C.【點(diǎn)睛】本題考查相似多邊形的判定,其對應(yīng)角相等,對應(yīng)邊成比例.兩個條件缺一不可.7、D【分析】利用圓的切線的性質(zhì)定理、等腰三角形的性質(zhì)即可得出.【詳解】解:∵PD切⊙O于點(diǎn)C,∴OC⊥CD,在Rt△OCD中,又CD=OC,∴∠COD=45°.∵OC=OA,∴∠OCA=×45°=22.5°.∴∠PCA=90°-22.5°=67.5°.故選:D.【點(diǎn)睛】本題考查切線的性質(zhì)定理,熟練掌握圓的切線的性質(zhì)定理、等腰三角形的性質(zhì)是解題的關(guān)鍵.8、A【解析】解:∵關(guān)于x的方程(m﹣1)x1+mx﹣1=0是一元二次方程,∴m-1≠0,解得:m≠1.故選A.9、B【解析】首先將一元二次方程化為一般式,然后直接計(jì)算判別式即可.【詳解】一元二次方程可化為:∴故答案為B.【點(diǎn)睛】此題主要考查一元二次方程的根的判別式的求解,熟練掌握,即可解題.10、D【分析】利用銳角三角函數(shù)定義判斷即可.【詳解】在Rt△ABC中,sinA=,在Rt△ACD中,sinA=,∵∠A+∠B=90°,∠B+∠BCD=90°,∴∠A=∠BCD,在Rt△BCD中,sinA=sin∠BCD=,故選:D.【點(diǎn)睛】此題考查了銳角三角函數(shù)的定義,熟練掌握銳角三角函數(shù)定義是解本題的關(guān)鍵.二、填空題(每小題3分,共24分)11、.【分析】連接,,,易求得垂直于x軸,可得為圓的周長,再找出圓半徑的規(guī)律即可解題.【詳解】連接,,
是上的點(diǎn),
,
直線l解析式為,
,
為等腰直角三角形,即軸,
同理,垂直于x軸,
為圓的周長,
以為圓心,為半徑畫圓,交x軸正半軸于點(diǎn),以為圓心,為半徑畫圓,交x軸正半軸于點(diǎn),以此類推,
,
,
當(dāng)時,
故答案為【點(diǎn)睛】本題考查了圓周長的計(jì)算,考查了從圖中找到圓半徑規(guī)律的能力,本題中準(zhǔn)確找到圓半徑的規(guī)律是解題的關(guān)鍵.12、1【分析】設(shè)較大三角形的面積為x平方米.根據(jù)相似三角形面積的比等于相似比的平方列出方程,然后求解即可.【詳解】設(shè)較大三角形的面積為x平方米.∵兩個相似三角形的對應(yīng)角平分線之比為2:5,∴兩個相似三角形的相似比是2:5,∴兩個相似三角形的面積比是4:25,∴8:x=4:25,解得:x=1.故答案為:1.【點(diǎn)睛】本題考查了相似三角形的性質(zhì),相似三角形周長的比等于相似比、相似三角形面積的比等于相似比的平方、相似三角形對應(yīng)高的比、對應(yīng)中線的比、對應(yīng)角平分線的比都等于相似比.13、140°.【分析】根據(jù)內(nèi)心的定義可知OB、OC為∠ABC和∠ACB的角平分線,根據(jù)三角形內(nèi)角和定理可求出∠OBC+∠OCB的度數(shù),進(jìn)而可求出∠BOC的度數(shù).【詳解】∵點(diǎn)O是△ABC的內(nèi)切圓的圓心,∴OB、OC為∠ABC和∠ACB的角平分線,∴∠OBC=∠ABC,∠OCB=∠ACB,∵∠A=100°,∴∠ABC+∠ACB=180°-100°=80°,∴∠OBC+∠OCB=(∠ABC+∠ACB)=40°,∴∠BOC=180°-40°=140°.故答案為:140°【點(diǎn)睛】本題考查了三角形內(nèi)心的定義及三角形內(nèi)角和定理,熟練掌握三角形內(nèi)切圓的圓心是三角形三條角平分線的交點(diǎn)是解題關(guān)鍵.14、;.【分析】由同弧所對的圓周角相等可得,可利用含對頂角的8字相似模型得到,由等弧所對的圓周角相等可得,在和含公共角,出現(xiàn)母子型相似模型.【詳解】∵∠ADE=∠BCE,∠AED=∠CEB,∴;∵是的中點(diǎn),∴,∴∠EAD=∠ABD,∠ADB公共,∴.綜上:;.故答案為:;.【點(diǎn)睛】本題考查的知識點(diǎn)是相似三角形的判定和性質(zhì),圓周角定理,同弧或等弧所對的圓周角相等的應(yīng)用是解題的關(guān)鍵.15、x1=0,x2=1【分析】根據(jù)x(x-1)=0,推出x=0,x-1=0,求出方程的解即可.【詳解】解:x(x﹣1)=0,∴x=0,x﹣1=0,解得:x1=0,x2=1,故答案為x1=0,x2=1.【點(diǎn)睛】本題考查了解一元一次方程和解一元二次方程,關(guān)鍵是能把解一元二次方程轉(zhuǎn)化成解一元一次方程.16、(0,0)【解析】根據(jù)坐標(biāo)的平移規(guī)律解答即可.【詳解】將點(diǎn)A(-3,2)向右平移3個單位長度,再向下平移2個單位長度,那么平移后對應(yīng)的點(diǎn)A′的坐標(biāo)是(-3+3,2-2),即(0,0),故答案為(0,0).【點(diǎn)睛】此題主要考查坐標(biāo)與圖形變化-平移.平移中點(diǎn)的變化規(guī)律是:橫坐標(biāo)右移加,左移減;縱坐標(biāo)上移加,下移減.17、【分析】利用勾股定理可得A1B12=a2,即正方形A1B1C1D1的面積,同理可求出正方形A2B2C2D2的面積,得出規(guī)律即可得答案.【詳解】∵正方形ABCD的邊長為a,,∴A1B12=A1B2+BB12==a2,A1B1=a,∴正方形A1B1C1D1的面積為a2,∵,∴A2B22==()2a2,∴正方形A2B2C2D2的面積為()2a2,……∴正方形的面積為()na2,故答案為:()na2【點(diǎn)睛】本題考查正方形的性質(zhì)及勾股定理,正確計(jì)算各正方形的面積并得出規(guī)律是解題關(guān)鍵.18、【解析】試題分析:根據(jù)已知數(shù)字等式得出變化規(guī)律,即可得出答案:∵,,,,…,∴。三、解答題(共66分)19、(1)是的切線;理由見解析;(2)的長.【分析】(1)連接,求得,根據(jù)圓周角定理得到,根據(jù)平行四邊形的性質(zhì)得到,得到,推出,于是得到結(jié)論;(2)連接,由點(diǎn)是的中點(diǎn),得到,求得,根據(jù)弧長公式即可得到結(jié)論.【詳解】(1)是的切線;理由:連接,,,,,四邊形是平行四邊形,,,,,是的切線;(2)連接,點(diǎn)是的中點(diǎn),,,,的長.【點(diǎn)睛】本題考查了直線與圓的位置關(guān)系,圓周角定理,平行四邊形的性質(zhì),正確的識別圖形是解題的關(guān)鍵.20、(1)證明見解析;(1)【分析】(1)由題意易得AD=AF,∠DAF=90°,則有∠DAB=∠FAC,進(jìn)而可證AB=AC,然后問題可證;(1)由(1)可得△ABD≌△ACF,則有∠ABD=∠ACF,進(jìn)而可得∠ACF=135°,然后根據(jù)正方形的性質(zhì)可求解.【詳解】(1)證明:∵四邊形ADEF為正方形,∴AD=AF,∠DAF=90°,又∵∠BAC=90°,∴∠DAB=∠FAC,∵∠ABC=45°,∠BAC=90°,∴∠ACB=45°,∴∠ABC=∠ACB,∴AB=AC,∴△ABD≌△ACF(SAS);(1)解:由(1)知△ABD≌△ACF,∴∠ABD=∠ACF,∵∠ABC=45°,∴∠ABD=135°,∴∠ACF=135°,由(1)知∠ACB=45°,∴∠DCF=90°,∵正方形ADEF邊長為,∴DF=4,∴OC=DF=×4=1.【點(diǎn)睛】本題主要考查正方形的性質(zhì)及等腰直角三角形的性質(zhì),熟練掌握正方形的性質(zhì)及等腰直角三角形的性質(zhì)是解題的關(guān)鍵.21、AP=10﹣5.【分析】先根據(jù)題意判斷出△O′PB是等腰直角三角形,由勾股定理求出PB的長,進(jìn)而可得出AP的長.【詳解】解:連接PO′∵∠OBA′=45°,O′P=O′B,∴∠O′PB=∠O′BP=45°,∠PO′B=90°∴△O′PB是等腰直角三角形,∵AB=10,∴O′P=O′B=5,∴PB==BO′=5,∴AP=AB﹣BP=10﹣5.【點(diǎn)睛】本題考查了旋轉(zhuǎn)的性質(zhì)、勾股定理、等腰直角三角形的判定,根據(jù)旋轉(zhuǎn)性質(zhì)判定出△O′PB是等腰直角三角形解題的關(guān)鍵.22、(1)證明見解析;(2).【分析】(1)連接OC,利用直徑所對的圓周角是直角,結(jié)合半徑相等,利用等邊對等角,證得∠OCE=90,即可證得結(jié)論;(2)連接DB,證得△ADB為等腰直角三角形,可求得直徑的長,再根據(jù)勾股定理求出AC即可.【詳解】(1)連接OC,∵是的直徑,∴∠ACB=90,∵OA=OC,∴∠OAC=∠OCA,∵∠BCE=∠BAC,∴∠BCE=∠BAC=∠OCA,∵∠OCA+∠OCB=90,∴∠BCE+∠OCB=90,∴∠OCE=90,
∴CE是⊙O的切線;(2)連接DB,∵AB是⊙O的直徑,
∴∠ADB=90,∵CD平分∠ACB,∴,∴,∴△ADB為等腰直角三角形,
∴,∵AB是⊙O的直徑,∴∠ACB=90,∴.【點(diǎn)睛】本題
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 工廠門口整修合同范例
- 2025自建房施工合同書 (包工不包料 B款)
- 廢料采購協(xié)議合同范例
- 活動執(zhí)行競標(biāo)合同范例
- 商場產(chǎn)品銷售合同范例
- 物業(yè)用工免責(zé)合同范例
- 私人買賣地合同范例
- 銅仁幼兒師范高等??茖W(xué)?!兜胤搅⒎▽?shí)訓(xùn)》2023-2024學(xué)年第一學(xué)期期末試卷
- 完整版100以內(nèi)加減法混合運(yùn)算4000道131
- 銅陵學(xué)院《計(jì)算機(jī)網(wǎng)絡(luò)基礎(chǔ)4》2023-2024學(xué)年第一學(xué)期期末試卷
- 安全帶管理登記臺帳
- GB 16847-1997保護(hù)用電流互感器暫態(tài)特性技術(shù)要求
- 裝飾裝修施工質(zhì)量檢查評分表
- 超圖軟件三維平臺技術(shù)參數(shù)v7c2015r
- 《思想道德與法治》 課件 第四章 明確價值要求 踐行價值準(zhǔn)則
- 幼兒園講座:課程游戲化、生活化建設(shè)的背景與目的課件
- 湖南省高等教育自學(xué)考試 畢業(yè)生登記表
- 地理信息系統(tǒng)(GIS)公開課(課堂)課件
- 電氣照明設(shè)備相關(guān)知識課件
- 婦產(chǎn)科護(hù)理學(xué)理論知識考核題庫與答案
- 漢字文化精品課件
評論
0/150
提交評論