版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
MeasurementSystemAnalysisMeasurementSystemAnalysis1ModuleContentMeasurementSystemAnalysisforAttributesComponentsofGageVariationEffectofMeasurementVariabilityAssessingMeasurementVariability2ModuleContentMeasurementSyst2MeasurementSystemAnalysisforAttributesIntherealworld,noteverycharacteristicismeasurable.Insuchcases,aunitisjudgedtobegoodorbadbasedonwhetheritisdefectfreee.g.visualinspectionwhetheritservesitsfunctionalpurposee.g.functionaltesting3MeasurementSystemAnalysisfo3WarmUpExerciseTask:Youhave60secondstodocumentthenumberoftimesthe6thletterofthealphabetappearsinthefollowingtext.TheNecessityofTrainingFarmHandsforFirstClassFarmsintheFatherlyHandlingofFarmLiveStockisForemostintheEyesofFarmOwners.SincetheForefathersoftheFarmOwnersTrainedtheFarmHandsforFirstClassFarmsintheFatherlyHandlingofFarmLiveStock,theFarmOwnersFeeltheyshouldcarryonwiththeFamilyTraditionofTrainingFarmHandsofFirstClassFarmersintheFatherlyHandlingofFarmLiveStockBecausetheyBelieveitistheBasisofGoodFundamentalFarmManagement.4WarmUpExerciseTask:Youhave4AttributeTerminologyAttributeData:Qualitative(go/nogo)datathatcanbetalliedforrecordingandanalysis.AttributeMeasurementSystem:Ameasurementsystemthatcompareseachparttoastandardandacceptsthepartifthisstandardismet.Screen:100%evaluationofproductusinginspectiontechniques(anattributemeasurementsystem).ScreenEffectiveness:Theabilityoftheattributemeasurementsystemtoproperlydiscriminategoodfrombad.CustomerBias:Operatorhasatendencytoholdbackgoodproduct.ProducerBias:Operatorhasatendencytopassdefectiveproduct.5AttributeTerminologyAttribute5AttributeR&R-Method1)Selectaminimumof30partsfromtheprocess.50%ofthepartsinyourstudyshouldhavedefects50%ofthepartsshouldbedefectfreeIfpossibleselectborderline(ormarginal)goodandbadsamples2)Identifytheinspectors,whoshouldbequalifiedandexperienced.3)Haveeachinspector,independentlyandinrandomorder,assessthesepartsanddeterminewhetherornottheypassorfail.4)EnterthedataintotheAttributeR&R.xlsspreadsheettoreporttheeffectivenessoftheattributemeasurementsystem.5)Documenttheresults.Implementappropriateactionstofixtheinspectionprocessifnecessary.6)Re-runthestudytoverifythefix.Note:A30piecesamplewillyieldanestimateofinspectorefficiencyandcapabilitywhichhasafairamountofuncertainty.Typicallyalargersampleisnotneededbecausetheinspectionprocessisobviouslyineffective.Thespreadsheetcanhandleupto100samples.6AttributeR&R-Method1)Sele6AttributeR&R-Method7AttributeR&R-Method77AttributeR&R-ScoringForeachsample–operatorcombinationAppraiserScore=1 ifTrial1=Trial2 AppraiserScore=0 ifotherwiseTheappraiserscorereflectstheconsistencyofanoperatorinassessingthesampleunit.AttributeScore=1 ifTrial1=Trial2=Attribute AttributeScore=0 ifotherwiseTheattributescorereflectstheconsistencyofanoperator’sassessmentofthesampleunitagainstthetrueattributeofthesampleunit.8AttributeR&R-ScoringForeac8AttributeR&R-Scoring9AttributeR&R-Scoring99AttributeR&R-ScoringOverallScreeningEffectivenessOverallAppraiserScore=1ifallappraiserscores=1 OverallAppraiserScore=0ifotherwiseOverallAttributeScore=1 ifallattributescores=1 OverallAttributeScore=0 ifotherwise10AttributeR&R-ScoringOverall10AttributeR&R-Scoring11AttributeR&R-Scoring1111NotesonAttributeR&R(1)If%AppraiserScoreislessthan100%trainingneedstooccur.Focusonspecificareas.(2)%Scorevs.Attributeisanerroragainstaknownpopulationasdeemedbyexperts.(3)100%isthetargetforScreen%EffectivenessScore.(4)Screen%Effectivevs.Attributeisanerroragainstaknownpopulation.100%isthetarget.(5)Attributelegendallowsexceltouseamacrotocountthenumberofoccurrencesofthelegendtext.12NotesonAttributeR&R(1)If%12VariableGR&RStudyofyourmeasurementsystemwillrevealtherelativeamountofvariationinyourdatathatresultsfrommeasurementsystemerror.Itisalsoagreattoolforcomparingtwoormoremeasurementdevicesortwoormoreoperators.MSAshouldbeusedaspartofthecriteriaforacceptinganewpieceofmeasurementequipmenttomanufacturing.Itshouldbethebasisforevaluatingameasurementsystemwhichissuspectofbeingdeficient.Itshouldbepartoftheperiodicmaintenanceprogram.13VariableGR&RStudyofyourmea13TypesofVariations14TypesofVariations1414GageVariation-BiasBiasisthedifferencebetweentheaverageofasetofmeasuredvaluesandthetruevalueofthecharacteristicbeingmeasured.x–BiasTrueValueObservedValue15GageVariation-Biasx–BiasTr15ExampleAnengineerchosefive“goldenunits”thatrepresentedtheexpectedrangeofmeasurements.Twelverandommeasurementsweremadeoneachpart.Meanvalueofthefivestandardis6mmandhistoricalprocessvariationwasfoundtobe12mm.DatacanbefoundintheMeasurementSystemAnalysis.MTWfile.Meanofthesixtymeasurements x =5.9467mmMeanvalueofthefivestandards =6mm Bias =x–=5.9467–6 =–0.0533mm =0.444%ofprocessvariation16ExampleAnengineerchosefive16GageVariation-LinearityLinearityisthedifferenceinbiasthroughouttheexpectedrangeofmeasurements.1217GageVariation-LinearityLine17GageVariation-LinearityLinearitymaybeobtainedviathefollowingprocedure:a) Foreachcase,computetheError(ei),i.e.measuredvalue–truevalueb) Foreachpart,computetheMeanError(ei),i.e.ieinc) DeterminetheslopeforbestfitlineofMeanErrorvsTrueValue
d) Linearity=|Slope|×ProcessVariation18GageVariation-LinearityLine18ExampleComputetheaccuracyandlinearityforthedatainpreviousexample,usingMiniTab’sGageLinearityStudy.StatQualityToolsGageLinearityStudy19ExampleComputetheaccuracyan19Example20Example2020GageVariation-StabilityStabilityistheabilityofthemeasurementsystemtoproducethesameaveragemeasurementsonthesameunitatdifferenttimes.x1–x2–x1–21GageVariation-StabilityStab21GageVariation-StabilityMeasurementsysteminstabilityistheresultofvariousfactors:Time(longidleperiods),numberofmeasurementstaken,airpressurechange,warm-up,drift,etc.Ifthecausativefactor(s)is/areknown,thefrequencyofcalibrationcanbeadjustedaccordinglytominimizetheerrorduetoinstability.22GageVariation-StabilityMeas22GageVariation-PrecisionPrecisionreferstotheabilityofameasurementsystemtoproducethesamevalueonrepeatedmeasurementsofthesameunit.Itismeasuredbythestandarddeviation(orvariance).s1s2System1System223GageVariation-PrecisionPrec23AccuracyvsPrecision1)accuratebutnotprecise 2)precisebutnotaccurate3)neitheraccuratenorprecise 4)bothaccurateandprecise24AccuracyvsPrecision1)accura24AccuracyvsPrecision1)accuratebutnotprecise 2)precisebutnotaccurate3)neitheraccuratenorprecise 4)bothaccurateandprecise25AccuracyvsPrecision1)accura25ComponentsofPrecisionPrecisionmaybebrokendownintotwoseparateparts:RepeatabilitytheabilityofameasurementsystemtorepeatameasurementonthesameunitunderthesameoperatingconditionsReproducibilitytheabilityofameasurementsystemtoreproduceameasurementonthesameunitunderdifferentmeasurementconditions26ComponentsofPrecisionPrecisi26SourceofVariabilityProcessVariabilitytruevariabilitywithinandbetweenunitsduetovariationinproductionprocess,rawmaterial,equipmentconditionandenvironmentMeasurementVariabilityvariabilityoverandabovetheactualunit-to-unitvariability,arisingfromthemeasurementitself27SourceofVariability2727BasicModelProductVariability(Actualvariability)MeasurementVariabilityTotalVariability(Observedvariability)+=28BasicModelProductVariability28Whichoneisgood?Line1Line2TotalVariability(observed)MeasurementVariabilityTrueProcessVariabilitys2(trueprocess)+s2
(meas)=s2
(observed)29Whichoneisgood?Line1Line229BasicModelObservedvalue=mastervalue+measurementoffsetObservedvariability=productvariability+measurementvariabilityMeasurementSystemBias:assessedthroughcalibration.(accuracy)MeasurementSystemVariability:assessedthroughthevariableR&Rstudy(precision)TruevaluesMeasuredvaluesmeasurementoffsetTruevaluesMeasuredvalues30BasicModelObservedvalue=30SourcesofMeasurementVariation'Measurement
Variation'HumidityCleanlinessVibrationLine
Voltage
VariationTemperature
FluctuationOperator
TechniqueStandard
ProceduresSufficient
Work
TimeMaintenance
StandardCalibration
FrequencyOperator
TrainingEase
of
Data
EntryAlgorithm
InstabiltyElectrical
InstabilityWearMechanicalinstabilityToolEnvironmentWorkMethods31SourcesofMeasurementVariati31DiscriminationThenumberofdecimalplacesthatcanbemeasuredbythesystem.Incrementsofmeasureshouldbeatleastone-tenthofthewidthoftheproductspecificationorprocessvariation.12Whichrulershouldbeusedtomeasurepartsfortheprocessrepresentedbythedistributionabove?32DiscriminationThenumberofde32AssessingMeasurementVariabilityThreecommonlyusedcriteria:? or? or ? orPrecisiontoToleranceRatioor%Toelrance%R&Ror%contribution?(DistinctCategories)233AssessingMeasurementVariabil33EffectofMeasurementVariability(1)ExcessiveMeasurementVariability AcceptableMeasurementVariabilityProcessVarianceMeasurementVarianceTotalVarianceProcessVarianceMeasurementVarianceTotalVarianceObservedProcessCapabilityActualProcessCapability34EffectofMeasurementVariabil34EffectofMeasurementVariability(1A)From Cp ObservedCp
ActualCp35EffectofMeasurementVariabil35Effectof2Measurement/2Total36Effectof2Measurement/2To36EffectofMeasurementVariability(1B)Alternatively,37EffectofMeasurementVariabil37Effectof5.15
(Measurement/Tolerance)38Effectof5.15(Measurement38EffectofMeasurementVariability(2)UnitisGoodUnitisBadPr(UnitisAccepted)Pr(UnitisRejected)39EffectofMeasurementVariabil39GageRepeatability&ReproducibilityStudy40GageRepeatability&Reproduci40GageRepeatability&ReproducibilityStudyMethod1:XandRBreaksdowntheoverallvariationintothreecategoriespart-to-partrepeatabilityReproducibility(Willnotbediscussed)Method2:ANOVAFurtherbreakdowninthereproducibilitycomponentpart-to-partrepeatabilityreproducibility —operatormaineffect —operator×partinteraction41GageRepeatability&Reproduci41ExampleABlackBeltseekstoassessthecapabilityofoxygenanalyzersusedinthemeasurementofoxygencontentinnitrogen-purgedreflowovens.Fourflowratesofnitrogenwereselectedforhisstudy.Twoanalyzerswererandomlyselected.Verifyifthecurrentoxygenanalyzersareadequate.Thetoleranceoftheprocess300.ThedatacanbefoundinMeasurementSystemAnalysis.MTW.42ExampleABlackBeltseekstoa42ExampleStatQualityToolsGageR&RStudy(Crossed)43ExampleStatQualityTools43ExampleSessionWindowGageR&RStudy-ANOVAMethodGageR&R %ContributionStdDevStudyVar%StudyVar%ToleranceSource
VarComp
(ofVarComp)
(SD)
(5.15*SD)
(%SV)
(SV/Toler)TotalGageR&R5.4507.382.334512.022727.164.01Repeatability0.4000.540.63223.25567.361.09Reproducibility5.0506.842.247311.573626.153.86Analyzer3.7245.041.92989.938222.453.31Analyzer*FlowRate1.3261.801.15175.931213.401.98Part-To-Part68.41092.628.271042.595896.2414.20TotalVariation73.860100.008.594244.2600100.0014.75NumberofDistinctCategories=544ExampleSessionWindow4444NumberofDistinctCategoriesThenumberofdistinctcategoriesrepresentsthenumberofgroupswithintheprocessdatathatthemeasurementsystemcandiscern.
If10differentpartswereusedinthegagemeasurementstudy,and4distinctcategoriesweredistinguished.Thismeansthatsomeofthose10partsarenotdifferentenoughtobediscernedasbeingdifferentbythemeasurementsystem.Highernumberofdistinctcategoriesimpliesamoreprecisegage.45NumberofDistinctCategories445NumberofDistinctCategoriesAutomobileIndustryActionGroup(AIAG)recommendations:Categories Remarks <2 Systemcannotdiscernonepartfromanother =2 Systemcanonlydividedataintwogroups e.g.highandlow =3 Systemcanonlydividedatainthreegroups e.g.low,middleandhigh
4 Systemisacceptable46NumberofDistinctCategoriesA46UsesofP/TandP/PV(%R&R)TheP/Tratioisthemostcommonestimateofmeasurementsystemprecision.Thisestimatemaybeappropriateforevaluatinghowwellthemeasurementsystemcanperformwithrespecttothespec.Specifications,however,mustbeappropriatelyselected.Generally,theP/Tratioisagoodestimatewhenthemeasurementsystemisonlyusedtoclassifyproductionsamples.Eventhen,ifprocesscapability(Cpk)isnotadequate,theP/Tratiomaygiveyouafalsesenseofsecurity.TheP/TV(%R&R)isthebestmeasurefortheBlackBelt.Thisestimateshowwellthemeasurementsystemperformswithrespecttotheoverallprocessvariation.%R&Risthebestestimatewhenperformingprocessimprovementstudies.Caremustbetakentousesamplesrepresentingfullprocessrange.47UsesofP/TandP/PV(%R&R)The47DistinctCategoriesvs%ContributionCategories
%Contribution2 33.3%3 18.2%4 11.1%5 7.4%6 5.3%7 3.9%8 3.0%48DistinctCategoriesvs%Contr48NestedGR&RFortheGRRStudyontheoxygenanalyzers,atanygivenflowrate,theactual“samplei”measuredbythetwoanalyzersareactuallydifferent.Forthatmatter,repeatedmeasuresbyananalyzerforanygivenflowrateareactuallymadeondifferent“samples”.Suchsituationsarecharacteristicofdestructivetesting.Insuchcases,aNestedGRRStudyshouldbeperformed.49NestedGR&RFortheGRRStudyo49ExampleStatQualityToolsGageR&RStudy(Nested)50ExampleStatQualityTools50Example51Example5151ExampleSessionWindowGageR&RStudy-ANOVAMethodGageR&R%ContributionStdDevStudyVar%StudyVar%ToleranceSource
VarComp
(ofVarComp)
(SD)
(5.15*SD)
(%SV)
(SV/Toler)TotalGageR&R0.39960.570.632163.25567.551.09Repeatability0.39960.570.632163.25567.551.09Reproducibility0.00000.000.000000.00000.000.00Part-To-Part69.736399.438.3508243.006799.7114.34TotalVariation70.1359100.008.3747243.1298100.0014.38NumberofDistinctCategories=1952ExampleSessionWindow5252
EndofTrainingRev1;9May02
EndofTrainingRev1;9May053MeasurementSystemAnalysisMeasurementSystemAnalysis54ModuleContentMeasurementSystemAnalysisforAttributesComponentsofGageVariationEffectofMeasurementVariabilityAssessingMeasurementVariability55ModuleContentMeasurementSyst55MeasurementSystemAnalysisforAttributesIntherealworld,noteverycharacteristicismeasurable.Insuchcases,aunitisjudgedtobegoodorbadbasedonwhetheritisdefectfreee.g.visualinspectionwhetheritservesitsfunctionalpurposee.g.functionaltesting56MeasurementSystemAnalysisfo56WarmUpExerciseTask:Youhave60secondstodocumentthenumberoftimesthe6thletterofthealphabetappearsinthefollowingtext.TheNecessityofTrainingFarmHandsforFirstClassFarmsintheFatherlyHandlingofFarmLiveStockisForemostintheEyesofFarmOwners.SincetheForefathersoftheFarmOwnersTrainedtheFarmHandsforFirstClassFarmsintheFatherlyHandlingofFarmLiveStock,theFarmOwnersFeeltheyshouldcarryonwiththeFamilyTraditionofTrainingFarmHandsofFirstClassFarmersintheFatherlyHandlingofFarmLiveStockBecausetheyBelieveitistheBasisofGoodFundamentalFarmManagement.57WarmUpExerciseTask:Youhave57AttributeTerminologyAttributeData:Qualitative(go/nogo)datathatcanbetalliedforrecordingandanalysis.AttributeMeasurementSystem:Ameasurementsystemthatcompareseachparttoastandardandacceptsthepartifthisstandardismet.Screen:100%evaluationofproductusinginspectiontechniques(anattributemeasurementsystem).ScreenEffectiveness:Theabilityoftheattributemeasurementsystemtoproperlydiscriminategoodfrombad.CustomerBias:Operatorhasatendencytoholdbackgoodproduct.ProducerBias:Operatorhasatendencytopassdefectiveproduct.58AttributeTerminologyAttribute58AttributeR&R-Method1)Selectaminimumof30partsfromtheprocess.50%ofthepartsinyourstudyshouldhavedefects50%ofthepartsshouldbedefectfreeIfpossibleselectborderline(ormarginal)goodandbadsamples2)Identifytheinspectors,whoshouldbequalifiedandexperienced.3)Haveeachinspector,independentlyandinrandomorder,assessthesepartsanddeterminewhetherornottheypassorfail.4)EnterthedataintotheAttributeR&R.xlsspreadsheettoreporttheeffectivenessoftheattributemeasurementsystem.5)Documenttheresults.Implementappropriateactionstofixtheinspectionprocessifnecessary.6)Re-runthestudytoverifythefix.Note:A30piecesamplewillyieldanestimateofinspectorefficiencyandcapabilitywhichhasafairamountofuncertainty.Typicallyalargersampleisnotneededbecausetheinspectionprocessisobviouslyineffective.Thespreadsheetcanhandleupto100samples.59AttributeR&R-Method1)Sele59AttributeR&R-Method60AttributeR&R-Method760AttributeR&R-ScoringForeachsample–operatorcombinationAppraiserScore=1 ifTrial1=Trial2 AppraiserScore=0 ifotherwiseTheappraiserscorereflectstheconsistencyofanoperatorinassessingthesampleunit.AttributeScore=1 ifTrial1=Trial2=Attribute AttributeScore=0 ifotherwiseTheattributescorereflectstheconsistencyofanoperator’sassessmentofthesampleunitagainstthetrueattributeofthesampleunit.61AttributeR&R-ScoringForeac61AttributeR&R-Scoring62AttributeR&R-Scoring962AttributeR&R-ScoringOverallScreeningEffectivenessOverallAppraiserScore=1ifallappraiserscores=1 OverallAppraiserScore=0ifotherwiseOverallAttributeScore=1 ifallattributescores=1 OverallAttributeScore=0 ifotherwise63AttributeR&R-ScoringOverall63AttributeR&R-Scoring64AttributeR&R-Scoring1164NotesonAttributeR&R(1)If%AppraiserScoreislessthan100%trainingneedstooccur.Focusonspecificareas.(2)%Scorevs.Attributeisanerroragainstaknownpopulationasdeemedbyexperts.(3)100%isthetargetforScreen%EffectivenessScore.(4)Screen%Effectivevs.Attributeisanerroragainstaknownpopulation.100%isthetarget.(5)Attributelegendallowsexceltouseamacrotocountthenumberofoccurrencesofthelegendtext.65NotesonAttributeR&R(1)If%65VariableGR&RStudyofyourmeasurementsystemwillrevealtherelativeamountofvariationinyourdatathatresultsfrommeasurementsystemerror.Itisalsoagreattoolforcomparingtwoormoremeasurementdevicesortwoormoreoperators.MSAshouldbeusedaspartofthecriteriaforacceptinganewpieceofmeasurementequipmenttomanufacturing.Itshouldbethebasisforevaluatingameasurementsystemwhichissuspectofbeingdeficient.Itshouldbepartoftheperiodicmaintenanceprogram.66VariableGR&RStudyofyourmea66TypesofVariations67TypesofVariations1467GageVariation-BiasBiasisthedifferencebetweentheaverageofasetofmeasuredvaluesandthetruevalueofthecharacteristicbeingmeasured.x–BiasTrueValueObservedValue68GageVariation-Biasx–BiasTr68ExampleAnengineerchosefive“goldenunits”thatrepresentedtheexpectedrangeofmeasurements.Twelverandommeasurementsweremadeoneachpart.Meanvalueofthefivestandardis6mmandhistoricalprocessvariationwasfoundtobe12mm.DatacanbefoundintheMeasurementSystemAnalysis.MTWfile.Meanofthesixtymeasurements x =5.9467mmMeanvalueofthefivestandards =6mm Bias =x–=5.9467–6 =–0.0533mm =0.444%ofprocessvariation69ExampleAnengineerchosefive69GageVariation-LinearityLinearityisthedifferenceinbiasthroughouttheexpectedrangeofmeasurements.1270GageVariation-LinearityLine70GageVariation-LinearityLinearitymaybeobtainedviathefollowingprocedure:a) Foreachcase,computetheError(ei),i.e.measuredvalue–truevalueb) Foreachpart,computetheMeanError(ei),i.e.ieinc) DeterminetheslopeforbestfitlineofMeanErrorvsTrueValue
d) Linearity=|Slope|×ProcessVariation71GageVariation-LinearityLine71ExampleComputetheaccuracyandlinearityforthedatainpreviousexample,usingMiniTab’sGageLinearityStudy.StatQualityToolsGageLinearityStudy72ExampleComputetheaccuracyan72Example73Example2073GageVariation-StabilityStabilityistheabilityofthemeasurementsystemtoproducethesameaveragemeasurementsonthesameunitatdifferenttimes.x1–x2–x1–74GageVariation-StabilityStab74GageVariation-StabilityMeasurementsysteminstabilityistheresultofvariousfactors:Time(longidleperiods),numberofmeasurementstaken,airpressurechange,warm-up,drift,etc.Ifthecausativefactor(s)is/areknown,thefrequencyofcalibrationcanbeadjustedaccordinglytominimizetheerrorduetoinstability.75GageVariation-StabilityMeas75GageVariation-PrecisionPrecisionreferstotheabilityofameasurementsystemtoproducethesamevalueonrepeatedmeasurementsofthesameunit.Itismeasuredbythestandarddeviation(orvariance).s1s2System1System276GageVariation-PrecisionPrec76AccuracyvsPrecision1)accuratebutnotprecise 2)precisebutnotaccurate3)neitheraccuratenorprecise 4)bothaccurateandprecise77AccuracyvsPrecision1)accura77AccuracyvsPrecision1)accuratebutnotprecise 2)precisebutnotaccurate3)neitheraccuratenorprecise 4)bothaccurateandprecise78AccuracyvsPrecision1)accura78ComponentsofPrecisionPrecisionmaybebrokendownintotwoseparateparts:RepeatabilitytheabilityofameasurementsystemtorepeatameasurementonthesameunitunderthesameoperatingconditionsReproducibilitytheabilityofameasurementsystemtoreproduceameasurementonthesameunitunderdifferentmeasurementconditions79ComponentsofPrecisionPrecisi79SourceofVariabilityProcessVariabilitytruevariabilitywithinandbetweenunitsduetovariationinproductionprocess,rawmaterial,equipmentconditionandenvironmentMeasurementVariabilityvariabilityoverandabovetheactualunit-to-unitvariability,arisingfromthemeasurementitself80SourceofVariability2780BasicModelProductVariability(Actualvariability)MeasurementVariabilityTotalVariability(Observedvariability)+=81BasicModelProductVariability81Whichoneisgood?Line1Line2TotalVariability(observed)MeasurementVariabilityTrueProcessVariabilitys2(trueprocess)+s2
(meas)=s2
(observed)82Whichoneisgood?Line1Line282BasicModelObservedvalue=mastervalue+measurementoffsetObservedvariability=productvariability+measurementvariabilityMeasurementSystemBias:assessedthroughcalibration.(accuracy)MeasurementSystemVariability:assessedthroughthevariableR&Rstudy(precision)TruevaluesMeasuredvaluesmeasurementoffsetTruevaluesMeasuredvalues83BasicModelObservedvalue=83SourcesofMeasurementVariation'Measurement
Variation'HumidityCleanlinessVibrationLine
Voltage
VariationTemperature
FluctuationOperator
TechniqueStandard
ProceduresSufficient
Work
TimeMaintenance
StandardCalibration
FrequencyOperator
TrainingEase
of
Data
EntryAlgorithm
InstabiltyElectrical
InstabilityWearMechanicalinstabilityToolEnvironmentWorkMethods84SourcesofMeasurementVariati84DiscriminationThenumberofdecimalplacesthatcanbemeasuredbythesystem.Incrementsofmeasureshouldbeatleastone-tenthofthewidthoftheproductspecificationorprocessvariation.12Whichrulershouldbeusedtomeasurepartsfortheprocessrepresentedbythedistributionabove?85DiscriminationThenumberofde85AssessingMeasurementVariabilityThreecommonlyusedcriteria:? or? or ? orPrecisiontoToleranceRatioor%Toelrance%R&Ror%contribution?(DistinctCategories)286AssessingMeasurementVariabil86EffectofMeasurementVariability(1)ExcessiveMeasurementVariability AcceptableMeasurementVariabilityProcessVarianceMeasurementVarianceTotalV
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 新聞媒體工作者簽證辦理指南
- 電影院電梯井道安裝及維護(hù)合同
- 商務(wù)旅游合同管理辦法
- 終止廣告合作意向書
- 員工團(tuán)建活動(dòng)激勵(lì)管理辦法
- 醫(yī)院施工協(xié)議
- 保險(xiǎn)業(yè)務(wù)清運(yùn)施工合同
- 圖書出發(fā)行費(fèi)收據(jù)
- 醫(yī)院培訓(xùn)師招聘合同
- 臨時(shí)客服人員聘用協(xié)議
- 院內(nèi)ACS與心臟驟停
- 文化活動(dòng)實(shí)施方案 組委會(huì)職責(zé)
- 2024年廣東南海產(chǎn)業(yè)集團(tuán)有限公司招聘筆試沖刺題(帶答案解析)
- 2024年接發(fā)列車技能競(jìng)賽理論考試題庫800題(含答案)
- 2024年輔警考試公基常識(shí)300題(附解析)
- 掃黃打非主題班會(huì) 課件
- 2024年城市合伙人合同模板
- 中華民族精神智慧樹知到答案2024年中央民族大學(xué)
- 中學(xué)教師評(píng)職稱述職報(bào)告
- 糖尿病膳食指南2024
- 上海大學(xué)繼續(xù)教育市場(chǎng)營銷網(wǎng)課答案更新版
評(píng)論
0/150
提交評(píng)論