![浙江省臺州院附中2021-2022學年中考試題猜想數(shù)學試卷含解析_第1頁](http://file4.renrendoc.com/view/dabde5b3d5b2ad2ac0fd53657e8f196f/dabde5b3d5b2ad2ac0fd53657e8f196f1.gif)
![浙江省臺州院附中2021-2022學年中考試題猜想數(shù)學試卷含解析_第2頁](http://file4.renrendoc.com/view/dabde5b3d5b2ad2ac0fd53657e8f196f/dabde5b3d5b2ad2ac0fd53657e8f196f2.gif)
![浙江省臺州院附中2021-2022學年中考試題猜想數(shù)學試卷含解析_第3頁](http://file4.renrendoc.com/view/dabde5b3d5b2ad2ac0fd53657e8f196f/dabde5b3d5b2ad2ac0fd53657e8f196f3.gif)
![浙江省臺州院附中2021-2022學年中考試題猜想數(shù)學試卷含解析_第4頁](http://file4.renrendoc.com/view/dabde5b3d5b2ad2ac0fd53657e8f196f/dabde5b3d5b2ad2ac0fd53657e8f196f4.gif)
![浙江省臺州院附中2021-2022學年中考試題猜想數(shù)學試卷含解析_第5頁](http://file4.renrendoc.com/view/dabde5b3d5b2ad2ac0fd53657e8f196f/dabde5b3d5b2ad2ac0fd53657e8f196f5.gif)
版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2021-2022中考數(shù)學模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.下列各式中,計算正確的是()A. B.C. D.2.若二次函數(shù)y=-x2+bx+c與x軸有兩個交點(m,0),(m-6,0),該函數(shù)圖像向下平移n個單位長度時與x軸有且只有一個交點,則n的值是()A.3 B.6 C.9 D.363.不等式組的整數(shù)解有()A.0個 B.5個 C.6個 D.無數(shù)個4.下列計算正確的是()A.a(chǎn)3﹣a2=a B.a(chǎn)2?a3=a6C.(a﹣b)2=a2﹣b2 D.(﹣a2)3=﹣a65.有15位同學參加歌詠比賽,所得的分數(shù)互不相同,取得分前8位同學進入決賽.某同學知道自己的分數(shù)后,要判斷自己能否進入決賽,他只需知道這15位同學的()A.平均數(shù) B.中位數(shù) C.眾數(shù) D.方差6.如圖,△ABC的面積為8cm2,AP垂直∠B的平分線BP于P,則△PBC的面積為(
)A.2cm2
B.3cm2
C.4cm2
D.5cm27.下列運算結果正確的是()A.3a2-a2=2 B.a(chǎn)2·a3=a6 C.(-a2)3=-a6 D.a(chǎn)2÷a2=a8.如圖,在平面直角坐標系中,半徑為2的圓P的圓心P的坐標為(﹣3,0),將圓P沿x軸的正方向平移,使得圓P與y軸相切,則平移的距離為()A.1 B.3 C.5 D.1或59.已知函數(shù)y=的圖象如圖,當x≥﹣1時,y的取值范圍是()A.y<﹣1 B.y≤﹣1 C.y≤﹣1或y>0 D.y<﹣1或y≥010.下列圖案中,既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.11.如圖,△ABC在邊長為1個單位的方格紙中,它的頂點在小正方形的頂點位置.如果△ABC的面積為10,且sinA=,那么點C的位置可以在()A.點C1處 B.點C2處 C.點C3處 D.點C4處12.下列各點中,在二次函數(shù)的圖象上的是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.計算(-2)×3+(-3)=_______________.14.若am=2,an=3,則am+2n=______.15.因式分解:____________.16.當a<0,b>0時.化簡:=_____.17.分解因式:4m2﹣16n2=_____.18.如圖,在平行四邊形ABCD中,AB<AD,∠D=30°,CD=4,以AB為直徑的⊙O交BC于點E,則陰影部分的面積為_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)某校組織學生去9km外的郊區(qū)游玩,一部分學生騎自行車先走,半小時后,其他學生乘公共汽車出發(fā),結果他們同時到達.己知公共汽車的速度是自行車速度的3倍,求自行車的速度和公共汽車的速度分別是多少?20.(6分)(1)如圖,四邊形為正方形,,那么與相等嗎?為什么?(2)如圖,在中,,,為邊的中點,于點,交于,求的值(3)如圖,中,,為邊的中點,于點,交于,若,,求.21.(6分)如圖,已知直線l與⊙O相離,OA⊥l于點A,交⊙O于點P,OA=5,AB與⊙O相切于點B,BP的延長線交直線l于點C.(1)求證:AB=AC;(2)若,求⊙O的半徑.22.(8分)先化簡,再求值:(+)÷,其中x=23.(8分)為了解黔東南州某縣中考學生的體育考試得分情況,從該縣參加體育考試的4000名學生中隨機抽取了100名學生的體育考試成績作樣本分析,得出如下不完整的頻數(shù)統(tǒng)計表和頻數(shù)分布直方圖.成績分組
組中值
頻數(shù)
25≤x<30
27.5
4
30≤x<35
32.5
m
35≤x<40
37.5
24
40≤x<45
a
36
45≤x<50
47.5
n
50≤x<55
52.5
4
(1)求a、m、n的值,并補全頻數(shù)分布直方圖;(2)若體育得分在40分以上(包括40分)為優(yōu)秀,請問該縣中考體育成績優(yōu)秀學生人數(shù)約為多少?24.(10分)計算:12+(13)﹣2﹣|1﹣3|﹣(π+1)025.(10分)如圖,在平行四邊形ABCD中,E、F分別在AD、BC邊上,且AE=CF.求證:(1)△ABE≌△CDF;(2)四邊形BFDE是平行四邊形.26.(12分)在正方形ABCD中,M是BC邊上一點,且點M不與B、C重合,點P在射線AM上,將線段AP繞點A順時針旋轉90°得到線段AQ,連接BP,DQ.(1)依題意補全圖1;(2)①連接DP,若點P,Q,D恰好在同一條直線上,求證:DP2+DQ2=2AB2;②若點P,Q,C恰好在同一條直線上,則BP與AB的數(shù)量關系為:.27.(12分)某校組織了一次初三科技小制作比賽,有A.B.C,D四個班共提供了100件參賽作品.C班提供的參賽作品的獲獎率為50%,其他幾個班的參賽作品情況及獲獎情況繪制在下列圖l和圖2兩幅尚不完整的統(tǒng)計圖中.(1)B班參賽作品有多少件?(2)請你將圖②的統(tǒng)計圖補充完整;(3)通過計算說明,哪個班的獲獎率高?(4)將寫有A,B,C,D四個字母的完全相同的卡片放入箱中,從中一次隨機抽出兩張卡片,求抽到A,B兩班的概率.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】
接利用合并同類項法則以及積的乘方運算法則、同底數(shù)冪的乘除運算法則分別計算得出答案.【詳解】A、無法計算,故此選項錯誤;B、a2?a3=a5,故此選項錯誤;C、a3÷a2=a,正確;D、(a2b)2=a4b2,故此選項錯誤.故選C.【點睛】此題主要考查了合并同類項以及積的乘方運算、同底數(shù)冪的乘除運算,正確掌握相關運算法則是解題關鍵.2、C【解析】
設交點式為y=-(x-m)(x-m+6),在把它配成頂點式得到y(tǒng)=-[x-(m-3)]2+1,則拋物線的頂點坐標為(m-3,1),然后利用拋物線的平移可確定n的值.【詳解】設拋物線解析式為y=-(x-m)(x-m+6),∵y=-[x2-2(m-3)x+(m-3)2-1]=-[x-(m-3)]2+1,∴拋物線的頂點坐標為(m-3,1),∴該函數(shù)圖象向下平移1個單位長度時頂點落在x軸上,即拋物線與x軸有且只有一個交點,即n=1.故選C.【點睛】本題考查了拋物線與x軸的交點:把求二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)與x軸的交點坐標問題轉化為解關于x的一元二次方程.也考查了二次函數(shù)的性質.3、B【解析】
先解每一個不等式,求出不等式組的解集,再求整數(shù)解即可.【詳解】解不等式x+3>0,得x>﹣3,解不等式﹣x≥﹣2,得x≤2,∴不等式組的解集為﹣3<x≤2,∴整數(shù)解有:﹣2,﹣1,0,1,2共5個,故選B.【點睛】本題主要考查了不等式組的解法,并會根據(jù)未知數(shù)的范圍確定它所滿足的特殊條件的值.一般方法是先解不等式組,再根據(jù)解集求出特殊值.4、D【解析】各項計算得到結果,即可作出判斷.解:A、原式不能合并,不符合題意;B、原式=a5,不符合題意;C、原式=a2﹣2ab+b2,不符合題意;D、原式=﹣a6,符合題意,故選D5、B【解析】
由中位數(shù)的概念,即最中間一個或兩個數(shù)據(jù)的平均數(shù);可知15人成績的中位數(shù)是第8名的成績.根據(jù)題意可得:參賽選手要想知道自己是否能進入前8名,只需要了解自己的成績以及全部成績的中位數(shù),比較即可.【詳解】解:由于15個人中,第8名的成績是中位數(shù),故小方同學知道了自己的分數(shù)后,想知道自己能否進入決賽,還需知道這十五位同學的分數(shù)的中位數(shù).故選B.【點睛】此題主要考查統(tǒng)計的有關知識,主要包括平均數(shù)、中位數(shù)、眾數(shù)的意義.反映數(shù)據(jù)集中程度的統(tǒng)計量有平均數(shù)、中位數(shù)、眾數(shù)等,各有局限性,因此要對統(tǒng)計量進行合理的選擇和恰當?shù)倪\用.6、C【解析】
延長AP交BC于E,根據(jù)AP垂直∠B的平分線BP于P,即可求出△ABP≌△BEP,又知△APC和△CPE等底同高,可以證明兩三角形面積相等,即可求得△PBC的面積.【詳解】延長AP交BC于E.∵AP垂直∠B的平分線BP于P,∴∠ABP=∠EBP,∠APB=∠BPE=90°.在△APB和△EPB中,∵∠APB=∠EPBBP=BP∠ABP=∠EBP,∴△APB≌△EPB(ASA),∴S△APB=S△EPB,AP=PE,∴△APC和△CPE等底同高,∴S△APC=S△PCE,∴S△PBC=S△PBE+S△PCE=12S△ABC故選C.【點睛】本題考查了三角形面積和全等三角形的性質和判定的應用,關鍵是求出S△PBC=S△PBE+S△PCE=12S△7、C【解析】選項A,3a2-a2=2a2;選項B,a2·a3=a5;選項C,(-a2)3=-a6;選項D,a2÷a2=1.正確的只有選項C,故選C.8、D【解析】
分圓P在y軸的左側與y軸相切、圓P在y軸的右側與y軸相切兩種情況,根據(jù)切線的判定定理解答.【詳解】當圓P在y軸的左側與y軸相切時,平移的距離為3-2=1,當圓P在y軸的右側與y軸相切時,平移的距離為3+2=5,故選D.【點睛】本題考查的是切線的判定、坐標與圖形的變化-平移問題,掌握切線的判定定理是解題的關鍵,解答時,注意分情況討論思想的應用.9、C【解析】試題分析:根據(jù)反比例函數(shù)的性質,再結合函數(shù)的圖象即可解答本題.解:根據(jù)反比例函數(shù)的性質和圖象顯示可知:此函數(shù)為減函數(shù),x≥-1時,在第三象限內(nèi)y的取值范圍是y≤-1;在第一象限內(nèi)y的取值范圍是y>1.故選C.考點:本題考查了反比例函數(shù)的性質點評:此類試題屬于難度一般的試題,考生在解答此類試題時一定要注意分析反比例函數(shù)的基本性質和知識,反比例函數(shù)y=的圖象是雙曲線,當k>1時,圖象在一、三象限,在每個象限內(nèi)y隨x的增大而減??;當k<1時,圖象在二、四象限,在每個象限內(nèi),y隨x的增大而增大10、B【解析】
根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【詳解】A、是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;
B、是軸對稱圖形,也是中心對稱圖形,故此選項正確;
C、不是軸對稱圖形,是中心對稱圖形,故此選項錯誤;
D、不是軸對稱圖形,是中心對稱圖形,故此選項錯誤.
故選B.【點睛】考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.11、D【解析】如圖:∵AB=5,,∴D=4,∵,∴,∴AC=4,∵在RT△AD中,D,AD=8,∴A=,故答案為D.12、D【解析】
將各選項的點逐一代入即可判斷.【詳解】解:當x=1時,y=-1,故點不在二次函數(shù)的圖象;當x=2時,y=-4,故點和點不在二次函數(shù)的圖象;當x=-2時,y=-4,故點在二次函數(shù)的圖象;故答案為:D.【點睛】本題考查了判斷一個點是否在二次函數(shù)圖象上,解題的關鍵是將點代入函數(shù)解析式.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、-9【解析】
根據(jù)有理數(shù)的計算即可求解.【詳解】(-2)×3+(-3)=-6-3=-9【點睛】此題主要考查有理數(shù)的混合運算,解題的關鍵是熟知有理數(shù)的運算法則.14、18【解析】
運用冪的乘方和積的乘方的運算法則求解即可.【詳解】解:∵am=2,an=3,∴a3m+2n=(am)3×(an)2=23×32=1.故答案為1.【點睛】本題考查了冪的乘方和積的乘方,掌握運算法則是解答本題的關鍵.15、3(x-2)(x+2)【解析】
先提取公因式3,再根據(jù)平方差公式進行分解即可求得答案.注意分解要徹底.【詳解】原式=3(x2﹣4)=3(x-2)(x+2).故答案為3(x-2)(x+2).【點睛】本題考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式進行二次分解,注意分解要徹底.16、【解析】分析:按照二次根式的相關運算法則和性質進行計算即可.詳解:∵,∴.故答案為:.點睛:熟記二次根式的以下性質是解答本題的關鍵:(1);(2)=.17、4(m+2n)(m﹣2n).【解析】
原式提取4后,利用平方差公式分解即可.【詳解】解:原式=4().故答案為【點睛】本題考查提公因式法與公式法的綜合運用,解題的關鍵是熟練掌握因式分解的方法.18、【解析】【分析】連接半徑和弦AE,根據(jù)直徑所對的圓周角是直角得:∠AEB=90°,繼而可得AE和BE的長,所以圖中弓形的面積為扇形OBE的面積與△OBE面積的差,因為OA=OB,所以△OBE的面積是△ABE面積的一半,可得結論.【詳解】如圖,連接OE、AE,∵AB是⊙O的直徑,∴∠AEB=90°,∵四邊形ABCD是平行四邊形,∴AB=CD=4,∠B=∠D=30°,∴AE=AB=2,BE==2,∵OA=OB=OE,∴∠B=∠OEB=30°,∴∠BOE=120°,∴S陰影=S扇形OBE﹣S△BOE==,故答案為.【點睛】本題考查了扇形的面積計算、平行四邊形的性質,含30度角的直角三角形的性質等,求出扇形OBE的面積和△ABE的面積是解本題的關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、自行車的速度是12km/h,公共汽車的速度是1km/h.【解析】
設自行車的速度為xkm/h,則公共汽車的速度為3xkm/h,根據(jù)題意得:,解分式方程即可.【詳解】解:設自行車的速度為xkm/h,則公共汽車的速度為3xkm/h,根據(jù)題意得:,解得:x=12,經(jīng)檢驗,x=12是原分式方程的解,∴3x=1.答:自行車的速度是12km/h,公共汽車的速度是1km/h.【點睛】本題考核知識點:列分式方程解應用題.解題關鍵點:找出相等關系,列出方程.20、(1)相等,理由見解析;(2)2;(3).【解析】
(1)先判斷出AB=AD,再利用同角的余角相等,判斷出∠ABF=∠DAE,進而得出△ABF≌△DAE,即可得出結論;
(2)構造出正方形,同(1)的方法得出△ABD≌△CBG,進而得出CG=AB,再判斷出△AFB∽△CFG,即可得出結論;
(3)先構造出矩形,同(1)的方法得,∠BAD=∠CBP,進而判斷出△ABD∽△BCP,即可求出CP,再同(2)的方法判斷出△CFP∽△AFB,建立方程即可得出結論.【詳解】解:(1)BF=AE,理由:
∵四邊形ABCD是正方形,
∴AB=AD,∠BAD=∠D=90°,
∴∠BAE+∠DAE=90°,
∵AE⊥BF,
∴∠BAE+∠ABF=90°,
∴∠ABF=∠DAE,
在△ABF和△DAE中,∴△ABF≌△DAE,
∴BF=AE,(2)如圖2,
過點A作AM∥BC,過點C作CM∥AB,兩線相交于M,延長BF交CM于G,
∴四邊形ABCM是平行四邊形,
∵∠ABC=90°,
∴?ABCM是矩形,
∵AB=BC,
∴矩形ABCM是正方形,
∴AB=BC=CM,
同(1)的方法得,△ABD≌△BCG,
∴CG=BD,
∵點D是BC中點,
∴BD=BC=CM,
∴CG=CM=AB,
∵AB∥CM,
∴△AFB∽△CFG,∴(3)如圖3,在Rt△ABC中,AB=3,BC=4,
∴AC=5,
∵點D是BC中點,
∴BD=BC=2,
過點A作AN∥BC,過點C作CN∥AB,兩線相交于N,延長BF交CN于P,
∴四邊形ABCN是平行四邊形,
∵∠ABC=90°,∴?ABCN是矩形,
同(1)的方法得,∠BAD=∠CBP,
∵∠ABD=∠BCP=90°,
∴△ABD∽△BCP,∴∴∴CP=同(2)的方法,△CFP∽△AFB,∴∴∴CF=.【點睛】本題是四邊形綜合題,主要考查了正方形的性質和判定,平行四邊形的判定,矩形的判定和性質,全等三角形的判定和性質,相似三角形的判定和性質,構造出(1)題的圖形,是解本題的關鍵.21、(1)證明見解析;(2)1.【解析】
(1)由同圓半徑相等和對頂角相等得∠OBP=∠APC,由圓的切線性質和垂直得∠ABP+∠OBP=90°和∠ACB+∠APC=90°,則∠ABP=∠ACB,根據(jù)等角對等邊得AB=AC;(2)設⊙O的半徑為r,分別在Rt△AOB和Rt△ACP中根據(jù)勾股定理列等式,并根據(jù)AB=AC得52﹣r2=(2)2﹣(5﹣r)2,求出r的值即可.【詳解】解:(1)連接OB,∵OB=OP,∴∠OPB=∠OBP,∵∠OPB=∠APC,∴∠OBP=∠APC,∵AB與⊙O相切于點B,∴OB⊥AB,∴∠ABO=90°,∴∠ABP+∠OBP=90°,∵OA⊥AC,∴∠OAC=90°,∴∠ACB+∠APC=90°,∴∠ABP=∠ACB,∴AB=AC;(2)設⊙O的半徑為r,在Rt△AOB中,AB2=OA2﹣OB2=52﹣r2,在Rt△ACP中,AC2=PC2﹣PA2,AC2=(2)2﹣(5﹣r)2,∵AB=AC,∴52﹣r2=(2)2﹣(5﹣r)2,解得:r=1,則⊙O的半徑為1.【點睛】本題考查了圓的切線的性質,圓的切線垂直于經(jīng)過切點的半徑;并利用勾股定理列等式,求圓的半徑;此類題的一般做法是:若出現(xiàn)圓的切線,必連過切點的半徑,構造定理圖,得出垂直關系;簡記作:見切點,連半徑,見垂直.22、-【解析】
先根據(jù)分式混合運算的法則把原式進行化簡,再把x的值代入進行計算即可.【詳解】原式=[+]÷=[-+]÷=·=,當x=時,原式==-.【點睛】本題考查的是分式的化簡求值,熟知分式混合運算的法則是解答此題的關鍵.23、(1)詳見解析(2)2400【解析】
(1)求出組距,然后利用37.5加上組距就是a的值;根據(jù)頻數(shù)分布直方圖即可求得m的值,然后利用總人數(shù)100減去其它各組的人數(shù)就是n的值.(2)利用總人數(shù)4000乘以優(yōu)秀的人數(shù)所占的比例即可求得優(yōu)秀的人數(shù).【詳解】解:(1)組距是:37.5﹣32.5=5,則a=37.5+5=42.5;根據(jù)頻數(shù)分布直方圖可得:m=12;則n=100﹣4﹣12﹣24﹣36﹣4=1.補全頻數(shù)分布直方圖如下:(2)∵優(yōu)秀的人數(shù)所占的比例是:=0.6,∴該縣中考體育成績優(yōu)秀學生人數(shù)約為:4000×0.6=2400(人)24、3【解析】
先算負整數(shù)指數(shù)冪、零指數(shù)冪、二次根式的化簡、絕對值,再相加即可求解;【詳解】解:原式=23=23=【點睛】考查實數(shù)的混合運算,分別掌握負整數(shù)指數(shù)冪、零指數(shù)冪、二次根式的化簡、絕對值的計算法則是解題的關鍵.25、(1)見解析;(2)見解析;【解析】
(1)由四邊形ABCD是平行四邊形,根據(jù)平行四邊形的對邊相等,對角相等的性質,即可證得∠A=∠C,AB=CD,又由AE=CF,利用SAS,即可判定△ABE≌△CDF.(2)由四邊形ABCD是平行四邊形,根據(jù)平行四邊形對邊平行且相等,即可得AD∥BC,AD=BC,又由AE=CF,即可證得DE=BF.根據(jù)對邊平行且相等的四邊形是平行四邊形,即可證得四邊形BFDE是平行四邊形.【詳解】證明:(1)∵四邊形ABCD是平行四邊形,∴∠A=∠C,AB=CD,在△ABE和△CDF中,∵AB=CD,∠A=∠C,AE=CF,∴△ABE≌△CDF(SAS).(2)∵四邊形ABCD是平行四邊形,∴AD∥BC,AD=BC.∵AE=CF,∴AD﹣AE=BC﹣CF,即DE=BF.∴四邊形BFDE是平行四邊形.26、(1)詳見解析;(1)①詳見解析;②BP=AB.【解析】
(1)根據(jù)要求畫出圖形即可;(1)①連接BD,如圖1,只要證明△ADQ≌△ABP,∠DPB=90°即可解決問題;②結論:BP=AB,如圖3中,連接AC,延長CD到N,使得DN=CD,連接AN,QN.由△ADQ≌△ABP,△ANQ≌△ACP,推出DQ=PB,∠AQN=∠APC=45°,由∠AQP
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024-2025學年高中化學上學期第三周 氧化還原反應說課稿
- 7 我們有新玩法 說課稿-2023-2024學年道德與法治二年級下冊統(tǒng)編版
- 2025二手車購買合同書
- 2025合同的履行、變更、轉讓、撤銷和終止
- 14 《窮人》說課稿-2024-2025學年六年級語文上冊統(tǒng)編版001
- 買方購車合同范本
- 公路修建合同范本
- 鋪設碎石土路面施工方案
- 輕鋼吊頂施工方案
- 路燈池施工方案
- 課件:《教育強國建設規(guī)劃綱要(2024-2035年)》學習宣講
- 課題申報參考:生活服務數(shù)字化轉型下社區(qū)生活圈建設理念、模式與路徑研究
- DCMM練習題練習試題
- 《工業(yè)化建筑施工階段碳排放計算標準》
- 廢舊保溫棉處置合同范例
- 2024年數(shù)據(jù)編織價值評估指南白皮書-Aloudata
- 托育園老師培訓
- 人教版八年級英語上冊Unit1-10完形填空閱讀理解專項訓練
- 脊柱外科護理進修心得
- 4.1中國特色社會主義進入新時代+課件-2024-2025學年高中政治統(tǒng)編版必修一中國特色社會主義
- 護理工作中的人文關懷
評論
0/150
提交評論