2022-2023學(xué)年內(nèi)蒙古自治區(qū)烏蘭察布市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第1頁(yè)
2022-2023學(xué)年內(nèi)蒙古自治區(qū)烏蘭察布市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第2頁(yè)
2022-2023學(xué)年內(nèi)蒙古自治區(qū)烏蘭察布市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第3頁(yè)
2022-2023學(xué)年內(nèi)蒙古自治區(qū)烏蘭察布市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第4頁(yè)
2022-2023學(xué)年內(nèi)蒙古自治區(qū)烏蘭察布市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第5頁(yè)
已閱讀5頁(yè),還剩32頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022-2023學(xué)年內(nèi)蒙古自治區(qū)烏蘭察布市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(50題)1.剛體上A、B、C、D四點(diǎn)組成一個(gè)平行四邊形,如在其四個(gè)頂點(diǎn)作用四個(gè)力,此四個(gè)邊恰好組成封閉的力多邊形。則()

A.力系平衡

B.力系有合力

C.力系的合力偶矩等于平行四邊形ABCD的面積

D.力系的合力偶矩等于負(fù)的平行四邊形ABCD的面積的2倍

2.A.(-5,5)B.(-∞,0)C.(0,+∞)D.(-∞,+∞)

3.

4.設(shè)y=5x,則y'等于().

A.A.

B.

C.

D.

5.

6.設(shè)f(0)=0,且存在,則等于().A.A.f'(x)B.f'(0)C.f(0)D.f(x)

7.

8.

9.

10.設(shè)y=f(x)在[0,1]上連續(xù),且f(0)>0,f(1)<0,則下列選項(xiàng)正確的是

A.f(x)在[0,1]上可能無(wú)界

B.f(x)在[0,1]上未必有最小值

C.f(x)在[0,1]上未必有最大值

D.方程f(x)=0在(0,1)內(nèi)至少有一個(gè)實(shí)根

11.

12.A.A.-(1/2)B.1/2C.-1D.213.設(shè)y=sinx,則y'|x=0等于().A.1B.0C.-1D.-2

14.曲線y=x-3在點(diǎn)(1,1)處的切線斜率為()

A.-1B.-2C.-3D.-4

15.

16.對(duì)于微分方程y"-2y'+y=xex,利用待定系數(shù)法求其特解y*時(shí),下列特解設(shè)法正確的是()。A.y*=(Ax+B)ex

B.y*=x(Ax+B)ex

C.y*=Ax3ex

D.y*=x2(Ax+B)ex

17.設(shè)f(x)=sin2x,則f(0)=()

A.-2B.-1C.0D.2

18.設(shè)有直線當(dāng)直線l1與l2平行時(shí),λ等于().

A.1B.0C.-1/2D.-119.如圖所示兩楔形塊A、B自重不計(jì),二者接觸面光滑,受大小相等、方向相反且沿同一直線的兩個(gè)力的作用,則()。

A.A平衡,B不平衡B.A不平衡,B平衡C.A、B均不平衡D.A、B均平衡20.等于()。A.-1B.-1/2C.1/2D.121.A.A.0B.1C.2D.3

22.

23.

24.

25.

26.當(dāng)x→0時(shí),下列變量中為無(wú)窮小的是()。

A.lg|x|

B.

C.cotx

D.

27.

28.設(shè)y=2x3,則dy=()

A.2x2dx

B.6x2dx

C.3x2dx

D.x2dx

29.

30.

31.函數(shù)f(x)=lnz在區(qū)間[1,2]上拉格朗日公式中的ε等于()。

A.ln2

B.ln1

C.lne

D.

32.

33.設(shè)函數(shù)在x=0處連續(xù),則等于()。A.2B.1/2C.1D.-234.設(shè)函數(shù)y=f(x)二階可導(dǎo),且f(x)<0,f(x)<0,又△y=f(x+△x)-f(x),dy=f(x)△x,則當(dāng)△x>0時(shí),有()A.△y>dy>0

B.△<dy<0

C.dy>Ay>0

D.dy<△y<0

35.A.A.sin(x-1)+C

B.-sin(x-1)+C

C.sinx+C&nbsbr;

D.-sinx+C

36.

37.A.2B.-2C.-1D.138.設(shè)函數(shù)f(x)在[a,b]上連續(xù),則曲線y=f(x)與直線x=a,x=b,y=0所圍成的平面圖形的面積等于()。A.

B.

C.

D.

39.下列命題中正確的有().A.A.

B.

C.

D.

40.

41.當(dāng)x→0時(shí),2x+x2與x2比較是A.A.高階無(wú)窮小B.低階無(wú)窮小C.同階但不等價(jià)無(wú)窮小D.等價(jià)無(wú)窮小

42.

43.

44.

A.f(x)

B.f(x)+C

C.f/(x)

D.f/(x)+C

45.

46.設(shè)f(x)為連續(xù)的奇函數(shù),則等于().A.A.2af(x)

B.

C.0

D.f(a)-f(-a)

47.A.A.2B.1C.1/2D.0

48.

49.

50.設(shè)y=f(x)為可導(dǎo)函數(shù),則當(dāng)△x→0時(shí),△y-dy為△x的A.A.高階無(wú)窮小B.等價(jià)無(wú)窮小C.同階但不等價(jià)無(wú)窮小D.低階無(wú)窮小二、填空題(20題)51.52.設(shè)y=1nx,則y'=__________.53.

54.

55.將積分改變積分順序,則I=______.

56.

57.58.

59.

60.61.f(x)=lnx,則f[f(x)]=__________。

62.

63.f(x)=sinx,則f"(x)=_________。

64.

65.66.67.________.68.設(shè)曲線y=f(x)在點(diǎn)(1,f(1))處的切線平行于x軸,則該切線方程為.69.70.設(shè)z=x2y2+3x,則三、計(jì)算題(20題)71.求微分方程的通解.

72.

73.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.74.75.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.76.

77.78.求曲線在點(diǎn)(1,3)處的切線方程.79.證明:80.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).81.82.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為

S(x).

(1)寫(xiě)出S(x)的表達(dá)式;

(2)求S(x)的最大值.

83.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.

84.求微分方程y"-4y'+4y=e-2x的通解.

85.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則86.

87.

88.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

89.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).90.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.四、解答題(10題)91.求曲線y=x2、直線y=2-x與x軸所圍成的平面圖形的面積A及該圖形繞y軸旋轉(zhuǎn)所得旋轉(zhuǎn)體的體積Vy。

92.求∫sin(x+2)dx。

93.設(shè)ex-ey=siny,求y’94.

95.

96.97.

98.求微分方程y"-4y'+4y=e-2x的通解。

99.

100.五、高等數(shù)學(xué)(0題)101.f(x)在[a,b]上連續(xù)是f(x)在[a,b]上有界的()條件。A.充分B.必要C.充要D.非充分也非必要六、解答題(0題)102.設(shè)f(x)為連續(xù)函數(shù),且

參考答案

1.D

2.C本題考查的知識(shí)點(diǎn)為判定函數(shù)的單調(diào)性。

3.B

4.C本題考查的知識(shí)點(diǎn)為基本初等函數(shù)的求導(dǎo).

y=5x,y'=5xln5,因此應(yīng)選C.

5.A

6.B本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的定義.

由于存在,因此

可知應(yīng)選B.

7.B

8.A

9.A

10.D

11.C解析:

12.A

13.A由于

可知應(yīng)選A.

14.C由導(dǎo)數(shù)的幾何意義知,若y=f(x)可導(dǎo),則曲線在點(diǎn)(x0,f(x0))處必定存在切線,且該切線的斜率為f"(x0)。由于y=x-3,y"=-3x-4,y"|x=1=-3,可知曲線y=x-3在點(diǎn)(1,1)處的切線斜率為-3,故選C。

15.A

16.D特征方程為r2-2r+1=0,特征根為r=1(二重根),f(x)=xex,α=1為特征根,因此原方程特解y*=x2(Ax+B)ex,因此選D。

17.D由f(c)=sin2x可得f"(x)=cos2x(2x)"=2cos2x,f"(0)=2cos0=2,故選D。

18.C解析:

19.C

20.C本題考查的知識(shí)點(diǎn)為定積分的運(yùn)算。

故應(yīng)選C。

21.B

22.B

23.A

24.C

25.B

26.D

27.A

28.B

29.B解析:

30.C

31.D由拉格朗日定理

32.C

33.C本題考查的知識(shí)點(diǎn)為函數(shù)連續(xù)性的概念。由于f(x)在點(diǎn)x=0連續(xù),因此,故a=1,應(yīng)選C。

34.B

35.A本題考查的知識(shí)點(diǎn)為不定積分運(yùn)算.

可知應(yīng)選A.

36.A

37.A

38.C

39.B本題考查的知識(shí)點(diǎn)為級(jí)數(shù)的性質(zhì).

可知應(yīng)選B.通??梢詫⑵渥鳛榕卸?jí)數(shù)發(fā)散的充分條件使用.

40.B

41.B

42.C解析:

43.A

44.A由不定積分的性質(zhì)“先積分后求導(dǎo),作用抵消”可知應(yīng)選A.

45.B

46.C本題考查的知識(shí)點(diǎn)為定積分的對(duì)稱(chēng)性.

由定積分的對(duì)稱(chēng)性質(zhì)可知:若f(x)為[-a,a]上的連續(xù)的奇函數(shù),則

可知應(yīng)選C.

47.D

48.A

49.A

50.A由微分的定義可知△y=dy+o(△x),因此當(dāng)△x→0時(shí)△y-dy=o(△x)為△x的高階無(wú)窮小,因此選A。

51.

52.

53.

54.2

55.

56.tanθ-cotθ+C

57.

58.0

59.

60.本題考查的知識(shí)點(diǎn)為定積分計(jì)算.

可以利用變量替換,令u=2x,則du=2dx,當(dāng)x=0時(shí),a=0;當(dāng)x=1時(shí),u=2.因此

或利用湊微分法

本題中考生常在最后由于粗心而出現(xiàn)錯(cuò)誤.如

這里中丟掉第二項(xiàng).

61.則

62.+∞(發(fā)散)+∞(發(fā)散)

63.-sinx

64.

本題考查的知識(shí)點(diǎn)為連續(xù)性與極限的關(guān)系,左極限、右極限與極限的關(guān)系.65.-24.

本題考查的知識(shí)點(diǎn)為連續(xù)函數(shù)在閉區(qū)間上的最大值.

若f(x)在(a,b)內(nèi)可導(dǎo),在[a,b]上連續(xù),常可以利用導(dǎo)數(shù)判定f(x)在[a,b]上的最值:

66.答案:1

67.68.y=f(1).

本題考查的知識(shí)點(diǎn)有兩個(gè):-是導(dǎo)數(shù)的幾何意義,二是求切線方程.

設(shè)切點(diǎn)為(x0,f(x0)),則曲線y=f(x)過(guò)該點(diǎn)的切線方程為

y-f(x0)=f(x0)(x-x0).

由題意可知x0=1,且在(1,f(1))處曲線y=f(x)的切線平行于x軸,因此應(yīng)有f(x0)=0,故所求切線方程為

y—f(1)=0.

本題中考生最常見(jiàn)的錯(cuò)誤為:將曲線y=f(x)在點(diǎn)(x0,f(x0))處的切線方程寫(xiě)為

y-f(x0)=f(x)(x-x0)

而導(dǎo)致錯(cuò)誤.本例中錯(cuò)誤地寫(xiě)為

y-f(1)=f(x)(x-1).

本例中由于f(x)為抽象函數(shù),-些考生不習(xí)慣于寫(xiě)f(1),有些人誤寫(xiě)切線方程為

y-1=0.

69.70.2xy(x+y)+3本題考查的知識(shí)點(diǎn)為二元函數(shù)的偏導(dǎo)數(shù).

由于z=x2y2+3x,可知

71.

72.

73.

74.75.由二重積分物理意義知

76.由一階線性微分方程通解公式有

77.

78.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

79.

80.

列表:

說(shuō)明

81.

82.

83.函數(shù)的定義域?yàn)?/p>

注意

84.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,

85.由等價(jià)無(wú)窮小量的定義可知

86.

87.

88.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%

89.

90.

91.

92.∫sin(x+2)dx=∫sin(x+2)d(x+2)=-cos(x+2)+C。

93.94.本題考查的知識(shí)點(diǎn)為定積分的換元積分法.

95.

96.97.將方程兩端關(guān)于x求導(dǎo),得

98.

99.

100.

101.A定理:閉區(qū)間上的連續(xù)函數(shù)必有界;反之

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論