2022-2023學(xué)年安徽省淮南市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)_第1頁
2022-2023學(xué)年安徽省淮南市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)_第2頁
2022-2023學(xué)年安徽省淮南市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)_第3頁
2022-2023學(xué)年安徽省淮南市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)_第4頁
2022-2023學(xué)年安徽省淮南市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)_第5頁
已閱讀5頁,還剩33頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年安徽省淮南市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(50題)1.設(shè)f(x)在點(diǎn)x0處取得極值,則()

A.f"(x0)不存在或f"(x0)=0

B.f"(x0)必定不存在

C.f"(x0)必定存在且f"(x0)=0

D.f"(x0)必定存在,不一定為零

2.A.0B.1C.2D.4

3.方程z=x2+y2表示的曲面是()

A.橢球面B.旋轉(zhuǎn)拋物面C.球面D.圓錐面

4.設(shè)f(x)=e-2x,則f'(x)=()。A.-e-2x

B.e-2x

C.-(1/2)e-2x

D.-2e-2x

5.設(shè)().A.A.必定收斂B.必定發(fā)散C.收斂性與a有關(guān)D.上述三個(gè)結(jié)論都不正確

6.

7.點(diǎn)M(4,-3,5)到Ox軸的距離d=()A.A.

B.

C.

D.

8.

9.

10.

11.lim(x2+1)=

x→0

A.3

B.2

C.1

D.0

12.設(shè)函數(shù)f(x)在區(qū)間[0,1]上可導(dǎo),且f(x)>0,則()

A.f(1)>f(0)B.f(1)<f(0)C.f(1)=f(0)D.f(1)與f(0)的值不能比較

13.微分方程y′-y=0的通解為().

A.y=ex+C

B.y=e-x+C

C.y=Cex

D.y=Ce-x

14.力偶對(duì)剛體產(chǎn)生哪種運(yùn)動(dòng)效應(yīng)()。

A.既能使剛體轉(zhuǎn)動(dòng),又能使剛體移動(dòng)B.與力產(chǎn)生的運(yùn)動(dòng)效應(yīng)有時(shí)候相同,有時(shí)不同C.只能使剛體轉(zhuǎn)動(dòng)D.只能使剛體移動(dòng)

15.

A.2e-2x+C

B.

C.-2e-2x+C

D.

16.A.A.絕對(duì)收斂B.條件收斂C.發(fā)散D.收斂性與口有關(guān)

17.

18.A.dx+dyB.1/3·(dx+dy)C.2/3·(dx+dy)D.2(dx+dy)

19.由曲線,直線y=x,x=2所圍面積為

A.

B.

C.

D.

20.

21.A.dx+dy

B.

C.

D.2(dx+dy)

22.微分方程yy'=1的通解為A.A.y=x2+C

B.y2=x+C

C.1/2y2=Cx

D.1/2y2=x+C

23.A.f(x)+CB.f'(x)+CC.f(x)D.f'(x)

24.設(shè)Y=e-3x,則dy等于().

A.e-3xdx

B.-e-3xdx

C.-3e-3xdx

D.3e-3xdx

25.

在x=0處()。A.間斷B.可導(dǎo)C.可微D.連續(xù)但不可導(dǎo)

26.若,則()。A.-1B.0C.1D.不存在

27.

28.下列等式成立的是()。

A.

B.

C.

D.

29.圖示結(jié)構(gòu)中,F(xiàn)=10KN,1為圓桿,直徑d=15mm,2為正方形截面桿,邊長為a=20mm,a=30。,則各桿強(qiáng)度計(jì)算有誤的一項(xiàng)為()。

A.1桿受力20KNB.2桿受力17.3KNC.1桿拉應(yīng)力50MPaD.2桿壓應(yīng)力43.3MPa

30.設(shè)f(x)在[0,1]上連續(xù),在(0,1)內(nèi)可導(dǎo),且f(0)=f(1),則在(0,1)內(nèi)曲線y=f(x)的所有切線中().A.A.至少有一條平行于x軸B.至少有一條平行于y軸C.沒有一條平行于x軸D.可能有一條平行于y軸

31.

32.設(shè)平面則平面π1與π2的關(guān)系為().A.A.平行但不重合B.重合C.垂直D.既不平行,也不垂直33.()。A.

B.

C.

D.

34.A.1B.0C.2D.1/2

35.

36.

37.A.A.0

B.

C.arctanx

D.

38.

39.

40.

41.設(shè)f(x)為連續(xù)函數(shù),則等于()A.A.

B.

C.

D.

42.A.A.

B.

C.

D.

43.

44.A.A.3

B.5

C.1

D.

45.

46.微分方程y''-7y'+12y=0的通解為()A.y=C1e3x+C2e-4x

B.y=C1e-3x+C2e4x

C.y=C1e3x+C2e4x

D.y=C1e-3x+C2e-4x

47.

48.設(shè)函數(shù)z=y3x,則等于().A.A.y3xlny

B.3y3xlny

C.3xy3x

D.3xy3x-1

49.A.A.絕對(duì)收斂B.條件收斂C.發(fā)散D.收斂性與口有關(guān)

50.

二、填空題(20題)51.

52.

53.

54.

55.56.設(shè)曲線y=f(x)在點(diǎn)(1,f(1))處的切線平行于x軸,則該切線方程為______.57.方程cosxsinydx+sinxcosydy=0的通解為___________.

58.59.60.

61.

62.

63.設(shè)sinx為f(x)的原函數(shù),則f(x)=________。

64.

65.

66.

67.設(shè)f(x)=ax3-6ax2+b在區(qū)間[-1,2]的最大值為2,最小值為-29,又知a>0,則a,b的取值為______.

68.69.

70.

三、計(jì)算題(20題)71.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.72.證明:73.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.74.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).

75.

76.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則

77.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

78.

79.

80.求微分方程的通解.81.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.82.83.

84.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.85.將f(x)=e-2X展開為x的冪級(jí)數(shù).86.

87.求微分方程y"-4y'+4y=e-2x的通解.

88.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

89.90.求曲線在點(diǎn)(1,3)處的切線方程.四、解答題(10題)91.

92.將f(x)=e-2x展開為x的冪級(jí)數(shù).

93.

94.

95.96.求

97.

98.

99.

100.

五、高等數(shù)學(xué)(0題)101.已知函數(shù)z=ln(x+y2),求

六、解答題(0題)102.

參考答案

1.A若點(diǎn)x0為f(x)的極值點(diǎn),可能為兩種情形之一:(1)若f(x)在點(diǎn)x0處可導(dǎo),由極值的必要條件可知f"(x0)=0;(2)如f(x)=|x|在點(diǎn)x=0處取得極小值,但f(x)=|x|在點(diǎn)x=0處不可導(dǎo),這表明在極值點(diǎn)處,函數(shù)可能不可導(dǎo)。故選A。

2.A本題考查了二重積分的知識(shí)點(diǎn)。

3.B旋轉(zhuǎn)拋物面的方程為z=x2+y2.

4.D

5.D

6.C

7.B

8.B

9.C解析:

10.C

11.C

12.A由f"(x)>0說明f(x)在[0,1]上是增函數(shù),因?yàn)?>0,所以f(1)>f(0)。故選A。

13.C所給方程為可分離變量方程.

14.A

15.D

16.A

17.D

18.C本題考查了二元函數(shù)的全微分的知識(shí)點(diǎn),

19.B

20.C解析:

21.C

22.D

23.C

24.C

25.D①∵f(0)=0,f-(0)=0,f+(0)=0;∴f(x)在x=0處連續(xù);∵f-"(0)≠f"(0)∴f(x)在x=0處不可導(dǎo)。

26.D不存在。

27.D解析:

28.C

29.C

30.A本題考查的知識(shí)點(diǎn)有兩個(gè):羅爾中值定理;導(dǎo)數(shù)的幾何意義.

由題設(shè)條件可知f(x)在[0,1]上滿足羅爾中值定理,因此至少存在一點(diǎn)ξ∈(0,1),使f'(ξ)=0.這表明曲線y=f(x)在點(diǎn)(ξ,f(ξ))處的切線必定平行于x軸,可知A正確,C不正確.

如果曲線y=f(x)在點(diǎn)(ξ,f(ξ))處的切線平行于y軸,其中ξ∈(0,1),這條切線的斜率為∞,這表明f'(ξ)=∞為無窮大,此時(shí)說明f(x)在點(diǎn)x=ξ不可導(dǎo).因此可知B,D都不正確.

本題對(duì)照幾何圖形易于找出解答,只需依題設(shè)條件,畫出一條曲線,則可以知道應(yīng)該選A.

有些考生選B,D,這是由于不明確導(dǎo)數(shù)的幾何意義而導(dǎo)致的錯(cuò)誤.

31.A

32.C本題考查的知識(shí)點(diǎn)為兩平面的位置關(guān)系.

由于平面π1,π2的法向量分別為

可知n1⊥n2,從而π1⊥π2.應(yīng)選C.

33.A

34.C

35.B

36.A

37.A

38.D

39.D

40.C

41.D本題考查的知識(shí)點(diǎn)為定積分的性質(zhì);牛-萊公式.

可知應(yīng)選D.

42.A本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的計(jì)算.

可知應(yīng)選A.

43.C解析:

44.A本題考查的知識(shí)點(diǎn)為判定極值的必要條件.

故應(yīng)選A.

45.C

46.C因方程:y''-7y'+12y=0的特征方程為r2-7r+12=0,于是有特征根r1=3,r2=4,故微分方程的通解為:y=C1e3x+C2e4x

47.C解析:

48.D本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的計(jì)算.

z=y3x

是關(guān)于y的冪函數(shù),因此

故應(yīng)選D.

49.A

50.A

51.x=2x=2解析:

52.

53.<0本題考查了反常積分的斂散性(比較判別法)的知識(shí)點(diǎn)。

54.

55.

56.y=f(1)本題考查的知識(shí)點(diǎn)有兩個(gè):一是導(dǎo)數(shù)的幾何意義,二是求切線方程.

設(shè)切點(diǎn)為(x0,f(x0)),則曲線y=f(x)過該點(diǎn)的切線方程為

y-f(x0)=f'(x0)(x-x0).

由題意可知x0=1,且在(1,f(1))處曲線y=f(x)的切線平行于x軸,因此應(yīng)有f'(x0)=0,故所求切線方程為

y=f(1)=0.

本題中考生最常見的錯(cuò)誤為:將曲線y=f(x)在點(diǎn)(x0,f(x0))處的切線方程寫為

y-f(x0)=f'(x)(x-x0)

而導(dǎo)致錯(cuò)誤.本例中錯(cuò)誤地寫為

y-f(1)=f'(x)(x-1).

本例中由于f(x)為抽象函數(shù),一些考生不習(xí)慣于寫f(1),有些人誤寫切線方程為

y-1=0.

57.sinx·siny=Csinx·siny=C本題考查了可分離變量微分方程的通解的知識(shí)點(diǎn).

由cosxsinydx+sinxcosydy=0,知sinydsinx+sinxdsiny=-0,即d(sinx·siny)=0,兩邊積分得sinx·siny=C,這就是方程的通解.

58.

59.-1本題考查了洛必達(dá)法則的知識(shí)點(diǎn).

60.

61.3x2+4y62.2本題考查的知識(shí)點(diǎn)為極限運(yùn)算.

由于所給極限為“”型極限,由極限四則運(yùn)算法則有

63.0因?yàn)閟inx為f(x)的一個(gè)原函數(shù),所以f(x)=(sinx)"=cosx,f"(x)=-sinx。64.本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的運(yùn)算。由于z=x2+3xy+2y2-y,可得

65.00解析:

66.-2/π本題考查了對(duì)由參數(shù)方程確定的函數(shù)求導(dǎo)的知識(shí)點(diǎn).

67.

f'(x)=3ax2-12ax,f'(x)=0,則x=0或x=4,而x=4不在[-1,2]中,故舍去.f''(x)=6ax-12a,f''(0)=-12a,因?yàn)閍>0,所以,f''(0)<0,所以x=0是極值點(diǎn).又因f(-1)=-a-6a+b=b-7a,f(0)=b,f(2)=8a-24a+b=b-16a,因?yàn)閍>0,故當(dāng)x=0時(shí),f(x)最大,即b=2;當(dāng)x=2時(shí),f(x)最小.所以b-16a=-29,即16a=2+29=31,故a=.

68.69.(-1,1)。

本題考查的知識(shí)點(diǎn)為求冪級(jí)數(shù)的收斂區(qū)間。

所給級(jí)數(shù)為不缺項(xiàng)情形。

(-1,1)。注《綱》中指出,收斂區(qū)間為(-R,R),不包括端點(diǎn)。本題一些考生填1,這是誤將收斂區(qū)間看作收斂半徑,多數(shù)是由于考試時(shí)過于緊張而導(dǎo)致的錯(cuò)誤。

70.71.由二重積分物理意義知

72.

73.

74.

列表:

說明

75.76.由等價(jià)無窮小量的定義可知

77.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%

78.

79.

80.

81.

82.

83.由一階線性微分方程通解公式有

84.函數(shù)的定義域?yàn)?/p>

注意

85.

86.

87.解:原方程對(duì)應(yīng)的齊次方程為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論