




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年廣東省湛江市普通高校對(duì)口單招高等數(shù)學(xué)一自考模擬考試(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(50題)1.A.A.4B.-4C.2D.-2
2.
3.
4.A.6YB.6XYC.3XD.3X^2
5.
6.下列關(guān)于動(dòng)載荷Kd的敘述不正確的一項(xiàng)是()。
A.公式中,△j為沖擊無(wú)以靜載荷方式作用在被沖擊物上時(shí),沖擊點(diǎn)沿沖擊方向的線位移
B.沖擊物G突然加到被沖擊物上時(shí),K1=2,這時(shí)候的沖擊力為突加載荷
C.當(dāng)時(shí),可近似取
D.動(dòng)荷因數(shù)Ka因?yàn)橛蓻_擊點(diǎn)的靜位移求得,因此不適用于整個(gè)沖擊系統(tǒng)
7.A.A.為所給方程的解,但不是通解
B.為所給方程的解,但不-定是通解
C.為所給方程的通解
D.不為所給方程的解
8.A.1
B.0
C.2
D.
9.A.A.4πB.3πC.2πD.π
10.
11.微分方程y'=1的通解為A.y=xB.y=CxC.y=C-xD.y=C+x12.等于().A.A.0
B.
C.
D.∞
13.
A.
B.
C.
D.
14.()。A.-2B.-1C.0D.2
15.當(dāng)x→0時(shí),與x等價(jià)的無(wú)窮小量是
A.A.
B.ln(1+x)
C.C.
D.x2(x+1)
16.設(shè)函數(shù)y=f(x)的導(dǎo)函數(shù),滿足f(-1)=0,當(dāng)x<-1時(shí),f(x)<0;當(dāng)x>-1時(shí),f(x)>0.則下列結(jié)論肯定正確的是().
A.x=-1是駐點(diǎn),但不是極值點(diǎn)B.x=-1不是駐點(diǎn)C.x=-1為極小值點(diǎn)D.x=-1為極大值點(diǎn)17.
18.
19.
20.A.dx+dy
B.
C.
D.2(dx+dy)
21.
22.下列各式中正確的是
A.A.
B.B.
C.C.
D.D.
23.微分方程y'+y=0的通解為()。A.y=ex
B.y=e-x
C.y=Cex
D.y=Ce-x
24.
25.在空間直角坐標(biāo)系中方程y2=x表示的是
A.拋物線B.柱面C.橢球面D.平面26.若x0為f(x)的極值點(diǎn),則().A.A.f'(x0)必定存在,且f'(x0)=0
B.f'(x0)必定存在,但f'(x0)不一定等于零
C.f'(x0)不存在或f'(x0)=0
D.f'(x0)必定不存在
27.已知y=ksin2x的一個(gè)原函數(shù)為y=cos2x,則k等于().A.A.2B.1C.-lD.-2
28.
29.
30.下列級(jí)數(shù)中發(fā)散的是()
A.
B.
C.
D.
31.
32.函數(shù)f(x)在x=x0處連續(xù)是f(x)在x=x0處極限存在的()A.充分非必要條件B.必要非充分條件C.充分必要條件D.既不充分也不必要條件33.A.A.僅為x=+1B.僅為x=0C.僅為x=-1D.為x=0,±1
34.A.-3-xln3
B.-3-x/ln3
C.3-x/ln3
D.3-xln3
35.
36.
37.設(shè)函數(shù)f(x)在x=1處可導(dǎo),且,則f'(1)等于().A.A.1/2B.1/4C.-1/4D.-1/2
38.A.收斂B.發(fā)散C.收斂且和為零D.可能收斂也可能發(fā)散
39.
40.
41.A.2/5B.0C.-2/5D.1/2
42.若函數(shù)f(x)=5x,則f'(x)=
A.5x-1
B.x5x-1
C.5xln5
D.5x
43.設(shè)函數(shù)y=f(x)二階可導(dǎo),且f(x)<0,f(x)<0,又△y=f(x+△x)-f(x),dy=f(x)△x,則當(dāng)△x>0時(shí),有()A.△y>dy>0
B.△<dy<0
C.dy>Ay>0
D.dy<△y<0
44.微分方程y"-y'=0的通解為()。A.
B.
C.
D.
45.
46.設(shè)函數(shù)在x=0處連續(xù),則等于()。A.2B.1/2C.1D.-247.設(shè)函數(shù)f(x)在點(diǎn)x0處連續(xù),則下列結(jié)論肯定正確的是()。A.
B.
C.
D.
48.()是一個(gè)組織的精神支柱,是組織文化的核心。
A.組織的價(jià)值觀B.倫理觀C.組織精神D.組織素養(yǎng)
49.
50.
二、填空題(20題)51.微分方程y=x的通解為________。
52.設(shè)z=xy,則dz=______.
53.
54.
55.
56.
57.
58.已知平面π:2x+y-3z+2=0,則過(guò)原點(diǎn)且與π垂直的直線方程為______.
59.過(guò)M0(1,-1,2)且垂直于平面2x-y+3z-1=0的直線方程為______.60.
61.
62.
63.
64.
65.
66.
67.
68.設(shè)y=sin(2+x),則dy=.69.
70.
三、計(jì)算題(20題)71.將f(x)=e-2X展開為x的冪級(jí)數(shù).72.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.73.
74.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
75.求微分方程y"-4y'+4y=e-2x的通解.
76.求微分方程的通解.77.78.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.79.求曲線在點(diǎn)(1,3)處的切線方程.80.81.證明:
82.
83.
84.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).
85.
86.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.87.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則88.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
89.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.90.四、解答題(10題)91.
92.
93.
94.95.所圍成的平面區(qū)域。
96.
97.
98.
99.設(shè)y=(1/x)+ln(1+x),求y'。
100.五、高等數(shù)學(xué)(0題)101.設(shè)某產(chǎn)品需求函數(shù)為
求p=6時(shí)的需求彈性,若價(jià)格上漲1%,總收入增加還是減少?
六、解答題(0題)102.
參考答案
1.D
2.C
3.A
4.D
5.A
6.D
7.B本題考查的知識(shí)點(diǎn)為線性常系數(shù)微分方程解的結(jié)構(gòu).
8.C
9.A
10.A解析:
11.D
12.A
13.B本題考查的知識(shí)點(diǎn)為交換二次積分次序。由所給二次積分可知積分區(qū)域D可以表示為1≤y≤2,y≤x≤2,交換積分次序后,D可以表示為1≤x≤2,1≤y≤x,故應(yīng)選B。
14.A
15.B本題考查了等價(jià)無(wú)窮小量的知識(shí)點(diǎn)
16.C本題考查的知識(shí)點(diǎn)為極值的第-充分條件.
由f(-1)=0,可知x=-1為f(x)的駐點(diǎn),當(dāng)x<-1時(shí)f(x)<0;當(dāng)x>-1時(shí),
f(x)>1,由極值的第-充分條件可知x=-1為f(x)的極小值點(diǎn),故應(yīng)選C.
17.C
18.D解析:
19.D解析:un、vn可能為任意數(shù)值,因此正項(xiàng)級(jí)數(shù)的比較判別法不能成立,可知應(yīng)選D。
20.C
21.D
22.B本題考查了定積分的性質(zhì)的知識(shí)點(diǎn)。
對(duì)于選項(xiàng)A,當(dāng)0<x<1時(shí),x3<x2,則。對(duì)于選項(xiàng)B,當(dāng)1<x<2時(shí),Inx>(Inx)2,則。對(duì)于選項(xiàng)C,對(duì)于選讀D,不成立,因?yàn)楫?dāng)x=0時(shí),1/x無(wú)意義。
23.D可以將方程認(rèn)作可分離變量方程;也可以將方程認(rèn)作一階線性微分方程;還可以仿二階線性常系數(shù)齊次微分方程,并作為特例求解。解法1將方程認(rèn)作可分離變量方程。分離變量
兩端分別積分
或y=Ce-x解法2將方程認(rèn)作一階線性微分方程.由通解公式可得解法3認(rèn)作二階常系數(shù)線性齊次微分方程特例求解:特征方程為r+1=0,特征根為r=-1,方程通解為y=Ce-x。
24.C
25.B解析:空間中曲線方程應(yīng)為方程組,故A不正確;三元一次方程表示空間平面,故D不正確;空間中,缺少一維坐標(biāo)的方程均表示柱面,可知應(yīng)選B。
26.C本題考查的知識(shí)點(diǎn)為函數(shù)極值點(diǎn)的性質(zhì).
若x0為函數(shù)y=f(x)的極值點(diǎn),則可能出現(xiàn)兩種情形:
(1)f(x)在點(diǎn)x0處不可導(dǎo),如y=|x|,在點(diǎn)x0=0處f(x)不可導(dǎo),但是點(diǎn)x0=0為f(a)=|x|的極值點(diǎn).
(2)f(x)在點(diǎn)x0可導(dǎo),則由極值的必要條件可知,必定有f'(x0)=0.
從題目的選項(xiàng)可知應(yīng)選C.
本題常見的錯(cuò)誤是選A.其原因是考生將極值的必要條件:“若f(x)在點(diǎn)x0可導(dǎo),且x0為f(x)的極值點(diǎn),則必有f'(x0)=0”認(rèn)為是極值的充分必要條件.
27.D本題考查的知識(shí)點(diǎn)為原函數(shù)的概念、復(fù)合函數(shù)求導(dǎo).
28.D
29.D
30.D
31.D
32.A函數(shù)f(x)在x=x0處連續(xù),則f(x)在x=x0處極限存在.但反過(guò)來(lái)卻不行,如函數(shù)f(x)=故選A。
33.C
34.A由復(fù)合函數(shù)鏈?zhǔn)椒▌t可知,因此選A.
35.C
36.C解析:
37.B本題考查的知識(shí)點(diǎn)為可導(dǎo)性的定義.
當(dāng)f(x)在x=1處可導(dǎo)時(shí),由導(dǎo)數(shù)定義可得
可知f'(1)=1/4,故應(yīng)選B.
38.D
39.A
40.C
41.A本題考查了定積分的性質(zhì)的知識(shí)點(diǎn)
42.C本題考查了導(dǎo)數(shù)的基本公式的知識(shí)點(diǎn)。f'(x)=(5x)'=5xln5.
43.B
44.B本題考查的知識(shí)點(diǎn)為二階常系數(shù)齊次微分方程的求解。微分方程為y"-y'=0特征方程為r2-r=0特征根為r1=1,r2=0方程的通解為y=C1ex+c2可知應(yīng)選B。
45.A
46.C本題考查的知識(shí)點(diǎn)為函數(shù)連續(xù)性的概念。由于f(x)在點(diǎn)x=0連續(xù),因此,故a=1,應(yīng)選C。
47.D本題考查的知識(shí)點(diǎn)為連續(xù)性的定義,連續(xù)性與極限、可導(dǎo)性的關(guān)系由函數(shù)連續(xù)性的定義:若在x0處f(x)連續(xù),則可知選項(xiàng)D正確,C不正確。由于連續(xù)性并不能保證f(x)的可導(dǎo)性,可知A不正確。自于連續(xù)必定能保證極限等于f(x0),而f(x0)不一定等于0,B不正確。故知應(yīng)選D。
48.C解析:組織精神是組織文化的核心,是一個(gè)組織的精神支柱。
49.B解析:
50.B51.本題考查可分離變量的微分方程.分離變量得dy=xdx,兩端分別積分,∫dy=∫xdx,
52.yxy-1dx+xylnxdy
53.
54.3x2+4y3x2+4y解析:
55.0
56.
解析:
57.
58.
解析:本題考查的知識(shí)點(diǎn)為直線方程和直線與平面的關(guān)系.
由于平面π與直線l垂直,則直線的方向向量s必定平行于平面的法向量n,因此可以取s=n=(2,1,-3).又知直線過(guò)原點(diǎn)-由直線的標(biāo)準(zhǔn)式方程可知為所求直線方程.
59.本題考查的知識(shí)點(diǎn)為直線方程的求解.
由于所求直線與平面垂直,因此直線的方向向量s可取為已知平面的法向量n=(2,-1,3).由直線的點(diǎn)向式方程可知所求直線方程為
60.3yx3y-1
61.(-33)(-3,3)解析:62.本題考查的知識(shí)點(diǎn)為定積分的基本公式。
63.
64.00解析:65.1.
本題考查的知識(shí)點(diǎn)為二元函數(shù)的極值.
可知點(diǎn)(0,0)為z的極小值點(diǎn),極小值為1.
66.0
67.0<k≤10<k≤1解析:68.cos(2+x)dx
這類問(wèn)題通常有兩種解法.
解法1
因此dy=cos(2+x)dx.
解法2利用微分運(yùn)算公式
dy=d(sin(2+x))=cos(2+x)·d(2+x)=cos(2+x)dx.69.e-1/2
70.
解析:
71.
72.
73.
則
74.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
75.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
76.
77.
78.
79.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 銷售公司業(yè)務(wù)員勞動(dòng)合同協(xié)議
- 房屋按揭共同還款合同樣本2025
- 生態(tài)養(yǎng)殖基地租賃合同
- 特許經(jīng)營(yíng)合同示范文本
- 新能源貨車租賃合同
- 采購(gòu)合同管理:風(fēng)險(xiǎn)防范與應(yīng)對(duì)措施
- 合作建房借款合同(單位集體住房)
- 度產(chǎn)品試用合同協(xié)議
- 金屬冶煉安全管理課件
- 寵物營(yíng)養(yǎng)與寵物骨骼健康考核試卷
- 農(nóng)民專業(yè)合作社財(cái)務(wù)報(bào)表(三張報(bào)表)
- 資助政策調(diào)查研究報(bào)告
- 跨學(xué)科學(xué)習(xí):一種基于學(xué)科的設(shè)計(jì)、實(shí)施與評(píng)價(jià)
- 殯葬禮儀服務(wù)整體服務(wù)方案
- 廣東中考英語(yǔ)考綱1600詞匯表及300詞組表(整理打印版)
- 學(xué)校安全班主任培訓(xùn)
- 小班數(shù)學(xué)活動(dòng)《寶寶送物品》課件
- 《電焊工培訓(xùn)》課件
- 《醫(yī)院感染概論》課件
- 石淋的中醫(yī)護(hù)理常規(guī)
- 懷念戰(zhàn)友合唱譜
評(píng)論
0/150
提交評(píng)論