最短路徑問題課件_第1頁
最短路徑問題課件_第2頁
最短路徑問題課件_第3頁
最短路徑問題課件_第4頁
最短路徑問題課件_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

最短路徑問題

探究最短路徑的實質(zhì):“化彎為直”

如圖所示,從A地到B地有三條路可供選擇,你會選走哪條路最近?你的理由是什么?

兩點之間,線段最短①②③(Ⅰ)兩點在一條直線異側已知:如圖,A,B在直線L的兩側,在L上求一點P,使得PA+PB最小。

P連接AB,線段AB與直線L的交點P,就是所求。問題1

相傳,古希臘亞歷山大里亞城里有一位久負盛名的學者,名叫海倫.有一天,一位將軍專程拜訪海倫,求教一個百思不得其解的問題:從圖中的A地出發(fā),到一條筆直的河邊l飲馬,然后到B地.到河邊什么地方飲馬可使他所走的路線全程最短?探索新知BAl精通數(shù)學、物理學的海倫稍加思索,利用軸對稱的知識回答了這個問題.這個問題后來被稱為“將軍飲馬問題”.你能將這個問題抽象為數(shù)學問題嗎?探索新知BAl將A,B兩地抽象為兩個點,將河l抽象為一條直線.B··Al問題2

如圖,點A,B在直線l的同側,點C是直線上的一個動點,當點C在l的什么位置時,AC與CB的和最?。緽·lA·作法:(1)作點B關于直線l的對稱點B′;(2)連接AB′,與直線l相交于點C.則點C即為所求.如圖,點A,B在直線l的同側,點C是直線上的一個動點,當點C在l的什么位置時,AC與CB的和最???B·lA·B′C你能用所學的知識證明AC+BC最短嗎?B·lA·B′C證明:如圖,在直線l上任取一點C′(與點C不重合),連接AC′,BC′,B′C′.由軸對稱的性質(zhì)知,

BC=B′C,BC′=B′C′.∴AC+BC

=AC+B′C=AB′,AC′+BC′

=AC′+B′C′.

你能用所學的知識證明AC+BC最短嗎?B·lA·B′CC′B·lA·B′CC′

在△AB′C′中,

AB′<AC′+B′C′,∴AC+BC<AC′+BC′.即AC+BC最短.一點在兩相交直線內(nèi)部已知:如圖A是銳角∠MON內(nèi)部任意一點,在∠MON的兩邊OM,ON上各取一點B,C,組成三角形,使三角形周長最小.BCDE分析:當AB、BC和AC三條邊的長度恰好能夠體現(xiàn)在一條直線上時,三角形的周長最小

已知:如圖A是銳角∠MON內(nèi)部任意一點,在∠MON的兩邊OM,ON上各取一點B,C,組成三角形,使三角形周長最小.分別作點A關于OM,ON的對稱點A′,A″;連接A′,A″,分別交OM,ON于點B、點C,則點B、點C即為所求

1.如圖,A.B兩地在一條河的兩岸,現(xiàn)要在河上建一座橋MN,橋造在何處才能使從A到B的路徑AMNB最短?(假設河的兩岸是平行的直線,橋要與河垂直)

A·BMNE作法:1.將點B沿垂直與河岸的方向平移一個河寬到E,

2.連接AE交河對岸與點M,

則點M為建橋的位置,MN為所建的橋。證明:由平移的性質(zhì),得BN∥EM且BN=EM,MN=CD,BD∥CE,BD=CE,所以A.B兩地的距:AM+MN+BN=AM+MN+EM=AE+MN,若橋的位置建在CD處,連接AC.CD.DB.CE,則AB兩地的距離為:AC+CD+DB=AC+CD+CE=AC+CE+MN,在△ACE中,∵

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論