版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年安徽省淮南市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(20題)1.
2.
3.已知作用在簡(jiǎn)支梁上的力F與力偶矩M=Fl,不計(jì)桿件自重和接觸處摩擦,則以下關(guān)于固定鉸鏈支座A的約束反力表述正確的是()。
A.圖(a)與圖(b)相同B.圖(b)與圖(c)相同C.三者都相同D.三者都不相同4.f(x)是可積的偶函數(shù),則是()。A.偶函數(shù)B.奇函數(shù)C.非奇非偶D.可奇可偶5.設(shè)f(x)為連續(xù)函數(shù),則等于().A.A.f(x)-f(a)B.f(a)-f(x)C.f(x)D.f(a)
6.
7.曲線y=x-3在點(diǎn)(1,1)處的切線斜率為()
A.-1B.-2C.-3D.-4
8.
9.
10.
11.設(shè)y1,y2為二階線性常系數(shù)微分方程y"+p1y+p2y=0的兩個(gè)特解,則C1y1+C2y2()A.為所給方程的解,但不是通解B.為所給方程的解,但不一定是通解C.為所給方程的通解D.不為所給方程的解12.A.A.
B.
C.
D.
13.f(x)在[a,b]上可導(dǎo)是f(x)在[a,b]上可積的()。
A.充要條件B.充分條件C.必要條件D.無(wú)關(guān)條件14.點(diǎn)M(4,-3,5)到Ox軸的距離d=()A.A.
B.
C.
D.
15.
16.A.A.3B.1C.1/3D.0
17.
18.A.A.
B.
C.
D.
19.設(shè)f(x)為連續(xù)函數(shù),則等于()A.A.
B.
C.
D.
20.管理幅度是指一個(gè)主管能夠直接、有效地指揮下屬成員的數(shù)目,經(jīng)研究發(fā)現(xiàn),高層管理人員的管理幅度通常以()較為合適。
A.4~8人B.10~15人C.15~20人D.10~20人二、填空題(20題)21.
22.
23.
24.25.級(jí)數(shù)的收斂區(qū)間為_(kāi)_____.26.設(shè)z=sin(x2y),則=________。
27.
28.
29.
30.
31.
32.33.34.35.微分方程y''+6y'+13y=0的通解為_(kāi)_____.
36.
37.曲線f(x)=x/x+2的鉛直漸近線方程為_(kāi)_________。
38.39.40.過(guò)原點(diǎn)且與直線垂直的平面方程為_(kāi)_____.三、計(jì)算題(20題)41.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.42.
43.
44.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.45.求曲線在點(diǎn)(1,3)處的切線方程.46.47.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫(xiě)出S(x)的表達(dá)式;
(2)求S(x)的最大值.
48.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).49.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則
50.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
51.證明:52.求微分方程的通解.53.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.54.55.
56.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).57.
58.求微分方程y"-4y'+4y=e-2x的通解.
59.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.
60.
四、解答題(10題)61.
62.求由曲線y2=(x-1)3和直線x=2所圍成的圖形繞x軸旋轉(zhuǎn)所得的旋轉(zhuǎn)體的體積.
63.求二元函數(shù)z=x2-xy+y2+x+y的極值。
64.求曲線y=x3+2過(guò)點(diǎn)(0,2)的切線方程,并求該切線與曲線及直線x=1所圍成的平面圖形D的面積S。
65.計(jì)算不定積分
66.求曲線y=x2、直線y=2-x與x軸所圍成的平面圖形的面積A及該圖形繞y軸旋轉(zhuǎn)所得旋轉(zhuǎn)體的體積Vy。
67.68.
69.
70.
五、高等數(shù)學(xué)(0題)71.設(shè)函數(shù)
=___________。
六、解答題(0題)72.
參考答案
1.C
2.C
3.D
4.Bf(x)是可積的偶函數(shù);設(shè)令t=-u,是奇函數(shù)。
5.C本題考查的知識(shí)點(diǎn)為可變限積分求導(dǎo).
由于當(dāng)f(x)連續(xù)時(shí),,可知應(yīng)選C.
6.D
7.C由導(dǎo)數(shù)的幾何意義知,若y=f(x)可導(dǎo),則曲線在點(diǎn)(x0,f(x0))處必定存在切線,且該切線的斜率為f"(x0)。由于y=x-3,y"=-3x-4,y"|x=1=-3,可知曲線y=x-3在點(diǎn)(1,1)處的切線斜率為-3,故選C。
8.B
9.D
10.A
11.B如果y1,y2這兩個(gè)特解是線性無(wú)關(guān)的,即≠C,則C1y1+C2y2是其方程的通解。現(xiàn)在題設(shè)中沒(méi)有指出是否線性無(wú)關(guān),所以可能是通解,也可能不是通解,故選B。
12.Dy=e-2x,y'=(e-2x)'=e-2x(-2x)'=-2e-2x,dy=y'dx=-2e-2xdx,故選D。
13.B∵可導(dǎo)一定連續(xù),連續(xù)一定可積;反之不一定。∴可導(dǎo)是可積的充分條件
14.B
15.B
16.A
17.C解析:
18.C
19.D本題考查的知識(shí)點(diǎn)為定積分的性質(zhì);牛-萊公式.
可知應(yīng)選D.
20.A解析:高層管理人員的管理幅度通常以4~8人較為合適。
21.00解析:
22.x+2y-z-2=0
23.
24.
25.(-1,1)本題考查的知識(shí)點(diǎn)為求冪級(jí)數(shù)的收斂區(qū)間.
所給級(jí)數(shù)為不缺項(xiàng)情形.
可知收斂半徑,因此收斂區(qū)間為
(-1,1).
注:《綱》中指出,收斂區(qū)間為(-R,R),不包括端點(diǎn).
本題一些考生填1,這是誤將收斂區(qū)間看作收斂半徑,多數(shù)是由于考試時(shí)過(guò)于緊張而導(dǎo)致的錯(cuò)誤.26.設(shè)u=x2y,則z=sinu,因此=cosu.x2=x2cos(x2y)。
27.eab
28.
本題考查的知識(shí)點(diǎn)為隱函數(shù)的微分.
解法1將所給表達(dá)式兩端關(guān)于x求導(dǎo),可得
從而
解法2將所給表達(dá)式兩端微分,
29.x=-3
30.
31.132.f(0).
本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的定義.
由于f(0)=0,f(0)存在,因此
本題如果改為計(jì)算題,其得分率也會(huì)下降,因?yàn)橛行┛忌33霈F(xiàn)利用洛必達(dá)法則求極限而導(dǎo)致運(yùn)算錯(cuò)誤:
因?yàn)轭}設(shè)中只給出f(0)存在,并沒(méi)有給出f(x)(x≠0)存在,也沒(méi)有給出f(x)連續(xù)的條件,因此上述運(yùn)算的兩步都錯(cuò)誤.
33.34.2本題考查的知識(shí)點(diǎn)為二階導(dǎo)數(shù)的運(yùn)算.
f'(x)=(x2)'=2x,
f"(x)=(2x)'=2.35.y=e-3x(C1cos2x+C2sin2x)微分方程y''+6y'+13y=0的特征方程為r2+6r+13=0,特征根為所以微分方程的通解為y=e-3x(C1cos2x+C2sin2x).
36.-3sin3x-3sin3x解析:
37.x=-2
38.
39.本題考查的知識(shí)點(diǎn)為定積分的基本公式。40.2x+y-3z=0本題考查的知識(shí)點(diǎn)為平面方程和平面與直線的關(guān)系.
由于已知直線與所求平面垂直,可知所給直線的方向向量s平行于所求平面的法向量n.由于s=(2,1,-3),因此可取n=(2,1,-3).由于平面過(guò)原點(diǎn),由平面的點(diǎn)法式方程,可知所求平面方程為2x+y-3z=0
41.
42.
則
43.
44.函數(shù)的定義域?yàn)?/p>
注意
45.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
46.
47.
48.49.由等價(jià)無(wú)窮小量的定義可知
50.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
51.
52.
53.
54.55.由一階線性微分方程通解公式有
56.
列表:
說(shuō)明
57.
58.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
59.由二重積分物理意義知
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 假期讀一本好書(shū)讀后感900字(12篇)
- 2024全新能源開(kāi)發(fā)項(xiàng)目投資與合作合同
- 中式快餐創(chuàng)業(yè)計(jì)劃書(shū)
- 2024年工業(yè)設(shè)備維修協(xié)議
- 2024年度4S店租賃期內(nèi)公共區(qū)域維護(hù)與管理協(xié)議
- 2024年建筑工程消防設(shè)計(jì)與施工合同
- 2024年企業(yè)廣告發(fā)布與媒體投放合同
- 2024年大數(shù)據(jù)分析與應(yīng)用服務(wù)協(xié)議
- 2024年度「惠州技術(shù)開(kāi)發(fā)」合同標(biāo)的:技術(shù)研發(fā)與成果共享
- 2024年工程項(xiàng)目混凝土供應(yīng)合同
- 青島市市政工程安全文明施工管理標(biāo)準(zhǔn)
- iso20000信息技術(shù)服務(wù)目錄
- 齒輪減速器的結(jié)構(gòu)認(rèn)識(shí)及拆裝
- 《農(nóng)學(xué)蔬菜種植》ppt課件
- 小學(xué)二年級(jí)閱讀練習(xí)(課堂PPT)
- GB31644-2018食品安全國(guó)家標(biāo)準(zhǔn)復(fù)合調(diào)味料
- 藏外佛教文獻(xiàn)W06n0055 大黑天神道場(chǎng)儀
- 方格紙,申論答題卡A4打印模板
- 最新國(guó)際大型石油公司組織結(jié)構(gòu)
- 數(shù)據(jù)字典范例
- 正射數(shù)據(jù)處理操作步驟
評(píng)論
0/150
提交評(píng)論