




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年廣東省云浮市成考專升本高等數(shù)學(xué)一自考預(yù)測試題(含答案)學(xué)校:________班級:________姓名:________考號:________
一、單選題(50題)1.A.A.僅為x=+1B.僅為x=0C.僅為x=-1D.為x=0,±1
2.
3.
4.
5.鑒別的方法主要有查證法、比較法、佐證法、邏輯法。其中()是指通過尋找物證、人證來驗(yàn)證信息的可靠程度的方法。
A.查證法B.比較法C.佐證法D.邏輯法
6.
A.-ex
B.-e-x
C.e-x
D.ex
7.曲線y=x+(1/x)的凹區(qū)間是
A.(-∞,-1)B.(-1,+∞)C.(-∞,0)D.(0,+∞)
8.A.A.橢球面B.圓錐面C.旋轉(zhuǎn)拋物面D.柱面
9.
10.在初始發(fā)展階段,國際化經(jīng)營的主要方式是()
A.直接投資B.進(jìn)出口貿(mào)易C.間接投資D.跨國投資11.下列函數(shù)在指定區(qū)間上滿足羅爾中值定理?xiàng)l件的是()。A.
B.
C.
D.
12.設(shè)∫0xf(t)dt=xsinx,則f(x)=()A.sinx+xcosxB.sinx-xcosxC.xcosx-sinxD.-(sinx+xcosx)
13.設(shè)f(x)在x=0處有二階連續(xù)導(dǎo)數(shù)
則x=0是f(x)的()。
A.間斷點(diǎn)B.極大值點(diǎn)C.極小值點(diǎn)D.拐點(diǎn)
14.構(gòu)件承載能力不包括()。
A.強(qiáng)度B.剛度C.穩(wěn)定性D.平衡性
15.
16.
17.
18.A.A.
B.B.
C.C.
D.D.
19.
20.
21.
22.
23.級數(shù)(a為大于0的常數(shù))().A.A.絕對收斂B.條件收斂C.發(fā)散D.收斂性與a有關(guān)24.級數(shù)(k為非零正常數(shù))().A.A.絕對收斂B.條件收斂C.發(fā)散D.收斂性與k有關(guān)25.。A.
B.
C.
D.
26.設(shè)f(x)為區(qū)間[a,b]上的連續(xù)函數(shù),則曲線y=f(x)與直線x=a,x=b,y=0所圍成的封閉圖形的面積為()。A.
B.
C..
D.不能確定
27.()。A.3B.2C.1D.0
28.設(shè)函數(shù)f(x)=COS2x,則f′(x)=().
A.2sin2x
B.-2sin2x
C.sin2x
D.-sin2x
29.
30.設(shè)y=sin2x,則y等于().A.A.-cos2xB.cos2xC.-2cos2xD.2cos2x
31.滑輪半徑r=0.2m,可繞水平軸O轉(zhuǎn)動,輪緣上纏有不可伸長的細(xì)繩,繩的一端掛有物體A,如圖所示。已知滑輪繞軸0的轉(zhuǎn)動規(guī)律φ=0.15t3rad,其中t單位為s,當(dāng)t=2s時,輪緣上M點(diǎn)的速度、加速度和物體A的速度、加速度計(jì)算不正確的是()。
A.M點(diǎn)的速度為vM=0.36m/s
B.M點(diǎn)的加速度為aM=0.648m/s2
C.物體A的速度為vA=0.36m/s
D.物體A的加速度為aA=0.36m/s2
32.設(shè)lnx是f(x)的一個原函數(shù),則f'(x)=()。A.
B.
C.
D.
33.微分方程y''-2y'=x的特解應(yīng)設(shè)為
A.AxB.Ax+BC.Ax2+BxD.Ax2+Bx+c
34.當(dāng)x→0時,與x等價的無窮小量是()
A.
B.ln(1+x)
C.
D.x2(x+1)
35.
36.極限等于().A.A.e1/2B.eC.e2D.137.A.A.必條件收斂B.必絕對收斂C.必發(fā)散D.收斂但可能為條件收斂,也可能為絕對收斂38.()。A.sinx+ccosx
B.sinx-xcosx
C.xcosx-sinx
D.-(sinx+xcosx)
39.函數(shù)y=x2-x+1在區(qū)間[-1,3]上滿足拉格朗日中值定理的ξ等于().
A.-3/4B.0C.3/4D.1
40.
41.
42.
43.
44.設(shè)f(x)在點(diǎn)x0處取得極值,則()
A.f"(x0)不存在或f"(x0)=0
B.f"(x0)必定不存在
C.f"(x0)必定存在且f"(x0)=0
D.f"(x0)必定存在,不一定為零
45.
46.設(shè)y=3+sinx,則y=()A.-cosxB.cosxC.1-cosxD.1+cosx47.A.A.導(dǎo)數(shù)存在,且有f(a)=一1B.導(dǎo)數(shù)一定不存在C.f(a)為極大值D.f(a)為極小值
48.
49.
50.下列()不是組織文化的特征。
A.超個體的獨(dú)特性B.不穩(wěn)定性C.融合繼承性D.發(fā)展性二、填空題(20題)51.
52.
53.
54.
55.
56.57.設(shè)區(qū)域D由曲線y=x2,y=x圍成,則二重積分58.冪級數(shù)的收斂區(qū)間為______.
59.
60.
61.
62.
63.
64.設(shè)函數(shù)y=x2+sinx,則dy______.65.66.________.67.
68.
69.
70.
三、計(jì)算題(20題)71.當(dāng)x一0時f(x)與sin2x是等價無窮小量,則72.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.73.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.74.
75.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).
76.
77.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
78.79.證明:80.81.82.求微分方程的通解.83.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.
84.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時,若價格上漲1%,需求量增(減)百分之幾?
85.求曲線在點(diǎn)(1,3)處的切線方程.86.將f(x)=e-2X展開為x的冪級數(shù).
87.
88.求微分方程y"-4y'+4y=e-2x的通解.
89.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.90.
四、解答題(10題)91.
92.
93.
94.95.96.
97.
98.
99.100.設(shè)y=xcosx,求y'.五、高等數(shù)學(xué)(0題)101.
=________。
六、解答題(0題)102.
參考答案
1.C
2.D
3.A
4.B解析:
5.C解析:佐證法是指通過尋找物證、人證來驗(yàn)證信息的可靠程度的方法。
6.C由可變上限積分求導(dǎo)公式有,因此選C.
7.D解析:
8.C本題考查的知識點(diǎn)為二次曲面的方程.
9.A
10.B解析:在初始投資階段,企業(yè)從事國際化經(jīng)營活動的主要特點(diǎn)是活動方式主要以進(jìn)出口貿(mào)易為主。
11.C
12.A
13.C則x=0是f(x)的極小值點(diǎn)。
14.D
15.C
16.D
17.D解析:
18.B本題考查了已知積分函數(shù)求原函數(shù)的知識點(diǎn)
19.D
20.C
21.B
22.D
23.A本題考查的知識點(diǎn)為級數(shù)絕對收斂與條件收斂的概念.
注意為p=2的p級數(shù),因此為收斂級數(shù),由比較判別法可知收斂,故絕對收斂,應(yīng)選A.
24.A本題考查的知識點(diǎn)為無窮級數(shù)的收斂性.
由于收斂,可知所給級數(shù)絕對收斂.
25.A本題考查的知識點(diǎn)為定積分換元積分法。
因此選A。
26.B本題考查的知識點(diǎn)為定積分的幾何意義。由定積分的幾何意義可知應(yīng)選B。常見的錯誤是選C。如果畫個草圖,則可以避免這類錯誤。
27.A
28.B由復(fù)合函數(shù)求導(dǎo)法則,可得
故選B.
29.C解析:
30.D本題考查的知識點(diǎn)為復(fù)合函數(shù)求導(dǎo)數(shù)的鏈?zhǔn)椒▌t.
31.B
32.C
33.C本題考查了二階常系數(shù)微分方程的特解的知識點(diǎn)。
因f(x)=x為一次函數(shù),且特征方程為r2-2r=0,得特征根為r1=0,r2=2.于是特解應(yīng)設(shè)為y*=(Ax+B)x=Ax2+Bx.
34.B?
35.A解析:
36.C本題考查的知識點(diǎn)為重要極限公式.
由于,可知應(yīng)選C.
37.D
38.A
39.D解析:本題考查的知識點(diǎn)為拉格朗日中值定理的條件與結(jié)論.
由于y=x2-x+1在[-1,3]上連續(xù),在(-1,3)內(nèi)可導(dǎo),可知y在[-1,3]上滿足拉格朗日中值定理,又由于y'=2x-1,因此必定存在ξ∈(-1,3),使
可知應(yīng)選D.
40.C解析:
41.B
42.C
43.D
44.A若點(diǎn)x0為f(x)的極值點(diǎn),可能為兩種情形之一:(1)若f(x)在點(diǎn)x0處可導(dǎo),由極值的必要條件可知f"(x0)=0;(2)如f(x)=|x|在點(diǎn)x=0處取得極小值,但f(x)=|x|在點(diǎn)x=0處不可導(dǎo),這表明在極值點(diǎn)處,函數(shù)可能不可導(dǎo)。故選A。
45.C
46.B
47.A本題考查的知識點(diǎn)為導(dǎo)數(shù)的定義.
48.A
49.B
50.B解析:組織文化的特征:(1)超個體的獨(dú)特性;(2)相對穩(wěn)定性;(3)融合繼承性;(4)發(fā)展性。51.2本題考查的知識點(diǎn)為極限運(yùn)算.
由于所給極限為“”型極限,由極限四則運(yùn)算法則有
52.1
53.22解析:
54.
55.y=lnx+Cy=lnx+C解析:
56.57.本題考查的知識點(diǎn)為計(jì)算二重積分.積分區(qū)域D可以表示為:0≤x≤1,x2≤y≤x,因此
58.(-2,2);本題考查的知識點(diǎn)為冪級數(shù)的收斂區(qū)間.
由于所給級數(shù)為不缺項(xiàng)情形,
可知收斂半徑,收斂區(qū)間為(-2,2).
59.
解析:60.2xsinx2;本題考查的知識點(diǎn)為可變上限積分的求導(dǎo).
61.
62.
63.y=064.(2x+cosx)dx;本題考查的知識點(diǎn)為微分運(yùn)算.
解法1利用dy=y'dx.由于y'=(x2+sinx)'=2x+cosx,
可知dy=(2x+cosx)dx.
解法2利用微分運(yùn)算法則dy=d(x2+sinx)=dx2+dsinx=(2x+cosx)dx.
65.
66.
67.
68.y=2x+1
69.(-∞2)
70.y''=x(asinx+bcosx)71.由等價無窮小量的定義可知
72.
73.由二重積分物理意義知
74.由一階線性微分方程通解公式有
75.
列表:
說明
76.
77.
78.
79.
80.
81.
82.
83.
84.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時,價格上漲1%需求量減少2.5%85.曲線方程為,點(diǎn)(1,3)在曲線上.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 農(nóng)村住房保障合同范本
- 高職體育教學(xué)中素質(zhì)拓展訓(xùn)練的應(yīng)用
- 北京汽車抵押合同范本
- 2025年江蘇省安全員C證(專職安全員)考試題庫
- 南風(fēng)股合同范本
- 勞動合同范本 英語
- 別墅項(xiàng)目出售合同范本
- 共享單車股轉(zhuǎn)讓合同范本
- 個人車輛拆解合同范本
- 2025山西省建筑安全員知識題庫附答案
- 余華讀書分享名著導(dǎo)讀《文城》
- 植物組織培養(yǎng)(園林植物教研組)-說課稿
- 高三二輪專題復(fù)習(xí)化學(xué)課件-分布系數(shù)(分?jǐn)?shù))圖像
- 支委委員辭去職務(wù)申請書
- 變更更正戶口項(xiàng)目申請表
- 【橋梁工程的發(fā)展趨勢與思考5300字】
- 云南省蒙自市長橋海水庫擴(kuò)建工程環(huán)評報告
- 質(zhì)量手冊(依據(jù)ISO9001:2023年標(biāo)準(zhǔn))
- 算24點(diǎn)教學(xué)講解課件
- 提高住院患者痰培養(yǎng)標(biāo)本留取的合格率品管圈ppt匯報書
- GB/T 35274-2023信息安全技術(shù)大數(shù)據(jù)服務(wù)安全能力要求
評論
0/150
提交評論