2022-2023學(xué)年四川省雅安市普通高校對口單招高等數(shù)學(xué)一自考預(yù)測試題(含答案)_第1頁
2022-2023學(xué)年四川省雅安市普通高校對口單招高等數(shù)學(xué)一自考預(yù)測試題(含答案)_第2頁
2022-2023學(xué)年四川省雅安市普通高校對口單招高等數(shù)學(xué)一自考預(yù)測試題(含答案)_第3頁
2022-2023學(xué)年四川省雅安市普通高校對口單招高等數(shù)學(xué)一自考預(yù)測試題(含答案)_第4頁
2022-2023學(xué)年四川省雅安市普通高校對口單招高等數(shù)學(xué)一自考預(yù)測試題(含答案)_第5頁
已閱讀5頁,還剩36頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年四川省雅安市普通高校對口單招高等數(shù)學(xué)一自考預(yù)測試題(含答案)學(xué)校:________班級:________姓名:________考號:________

一、單選題(40題)1.設(shè)函數(shù)在x=0處連續(xù),則等于()。A.2B.1/2C.1D.-2

2.

3.

4.若f(x)有連續(xù)導(dǎo)數(shù),下列等式中一定成立的是

A.d∫f(x)dx=f(x)dx

B.d∫f(x)dx=f(x)

C.d∫f(x)dx=f(x)+C

D.∫df(x)=f(x)

5.

6.()A.A.

B.

C.

D.

7.

8.設(shè)Y=x2-2x+a,貝0點x=1()。A.為y的極大值點B.為y的極小值點C.不為y的極值點D.是否為y的極值點與a有關(guān)

9.設(shè)Y=e-5x,則dy=().

A.-5e-5xdx

B.-e-5xdx

C.e-5xdx

D.5e-5xdx

10.

11.微分方程y"+y'=0的通解為

A.y=Ce-x

B.y=e-x+C

C.y=C1e-x+C2

D.y=e-x

12.f(x)在[a,b]上連續(xù)是f(x)在[a,b]上有界的()條件。A.充分B.必要C.充要D.非充分也非必要13.已知y=ksin2x的一個原函數(shù)為y=cos2x,則k等于()。A.2B.1C.-1D.-2

14.

15.

16.()。A.e-2

B.e-2/3

C.e2/3

D.e2

17.

18.當(dāng)x→0時,3x2+2x3是3x2的()。A.高階無窮小B.低階無窮小C.同階無窮小但不是等價無窮小D.等價無窮小19.設(shè)f'(x0)=1,則等于().A.A.3B.2C.1D.1/2

20.

21.

22.當(dāng)x→0時,x+x2+x3+x4為x的

A.等價無窮小B.2階無窮小C.3階無窮小D.4階無窮小

23.曲線的水平漸近線的方程是()

A.y=2B.y=-2C.y=1D.y=-124.二次積分等于()A.A.

B.

C.

D.

25.方程x2+2y2+3z2=1表示的二次曲面是

A.圓錐面B.旋轉(zhuǎn)拋物面C.球面D.橢球面

26.

27.函數(shù)z=x2-xy+y2+9x-6y+20有

A.極大值f(4,1)=63B.極大值f(0,0)=20C.極大值f(-4,1)=-1D.極小值f(-4,1)=-128.設(shè)y=cos4x,則dy=()。A.4sin4xdxB.-4sin4xdxC.(1/4)sin4xdxD.-(1/4)sin4xdx

29.

30.在空間直角坐標(biāo)系中,方程2+3y2+3x2=1表示的曲面是().

A.球面

B.柱面

C.錐面

D.橢球面

31.A.A.0B.1C.2D.任意值32.微分方程y'=1的通解為A.y=xB.y=CxC.y=C-xD.y=C+x

33.已知

=()。

A.

B.

C.

D.

34.

35.

36.A.A.

B.

C.-3cotx+C

D.3cotx+C

37.

38.f(x)是可積的偶函數(shù),則是()。A.偶函數(shù)B.奇函數(shù)C.非奇非偶D.可奇可偶

39.

40.

二、填空題(50題)41.42.43.44.設(shè)函數(shù)x=3x+y2,則dz=___________

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.61.二元函數(shù)z=x2+3xy+y2+2x,則=________。

62.

63.

64.

65.

66.

67.

68.設(shè)f'(1)=2.則

69.

70.

71.

72.

73.曲線y=x3-6x的拐點坐標(biāo)為______.

74.

75.

76.

77.

78.

79.微分方程y+y=sinx的一個特解具有形式為

80.

81.

82.微分方程y"+y'=0的通解為______.

83.

84.

85.86.

87.

88.

89.

90.設(shè)f(x,y,z)=xyyz,則

=_________.三、計算題(20題)91.92.93.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.94.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.95.證明:96.

97.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(1,1)處的切線l的方程.98.求微分方程的通解.

99.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時,若價格上漲1%,需求量增(減)百分之幾?

100.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點.101.設(shè)拋物線Y=1-x2與x軸的交點為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為

S(x).

(1)寫出S(x)的表達式;

(2)求S(x)的最大值.

102.當(dāng)x一0時f(x)與sin2x是等價無窮小量,則103.

104.求微分方程y"-4y'+4y=e-2x的通解.

105.將f(x)=e-2X展開為x的冪級數(shù).106.求曲線在點(1,3)處的切線方程.107.

108.

109.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.

110.

四、解答題(10題)111.

112.求由曲線y=x,y=lnx及y=0,y=1圍成的平面圖形的面積S及此平面圖形繞y軸旋轉(zhuǎn)一周所得旋轉(zhuǎn)體體積.

113.

114.判定曲線y=3x3-4x2-x+1的凹向.

115.設(shè)y=xcosx,求y'.

116.證明:ex>1+x(x>0).

117.計算118.用鐵皮做一個容積為V的圓柱形有蓋桶,證明當(dāng)圓柱的高等于底面直徑時,所使用的鐵皮面積最小。

119.求函數(shù)f(x,y)=e2x(x+y2+2y)的極值.

120.將函數(shù)f(x)=lnx展開成(x-1)的冪級數(shù),并指出收斂區(qū)間。

五、高等數(shù)學(xué)(0題)121.某廠每天生產(chǎn)某產(chǎn)品q個單位時,總成本C(q)=0.5q2+36q+9800(元),問每天生產(chǎn)多少時,平均成本最低?

六、解答題(0題)122.

參考答案

1.C本題考查的知識點為函數(shù)連續(xù)性的概念。由于f(x)在點x=0連續(xù),因此,故a=1,應(yīng)選C。

2.A解析:

3.B解析:

4.A解析:若設(shè)F'(x)=f(x),由不定積分定義知,∫f(x)dx=F(x)+C。從而

有:d∫f(x)dx=d∫F(x)+C]=F'(x)dx=f(x)dx,故A正確。D中應(yīng)為∫df(x)=f(x)+C。

5.D

6.A

7.A

8.B本題考查的知識點為一元函數(shù)的極值。求解的一般步驟為:先求出函數(shù)的一階導(dǎo)數(shù),令偏導(dǎo)數(shù)等于零,確定函數(shù)的駐點.再依極值的充分條件來判定所求駐點是否為極值點。由于y=x2-2x+a,可由y'=2x-2=0,解得y有唯一駐點x=1.又由于y"=2,可得知y"|x=1=2>0。由極值的充分條件可知x=1為y的極小值點,故應(yīng)選B。如果利用配方法,可得y=(x-1)2+a-1≥a-1,且y|x=1=a-1,由極值的定義可知x=1為y的極小值點,因此選B。

9.A

【評析】基本初等函數(shù)的求導(dǎo)公式與導(dǎo)數(shù)的四則運算法則是常見的試題,一定要熟記基本初等函數(shù)求導(dǎo)公式.對簡單的復(fù)合函數(shù)的求導(dǎo),應(yīng)該注意由外到里,每次求一個層次的導(dǎo)數(shù),不要丟掉任何一個復(fù)合層次.

10.A

11.C解析:y"+y'=0,特征方程為r2+r=0,特征根為r1=0,r2=-1;方程的通解為y=C1e-x+C1,可知選C。

12.A定理:閉區(qū)間上的連續(xù)函數(shù)必有界;反之不一定。

13.D本題考查的知識點為可變限積分求導(dǎo)。由原函數(shù)的定義可知(cos2x)'=ksin2x,而(cos2x)'=(-sin2x)·2,可知k=-2。

14.C解析:

15.A

16.B

17.D

18.D本題考查的知識點為無窮小階的比較。

由于,可知點x→0時3x2+2x3與3x2為等價無窮小,故應(yīng)選D。

19.B本題考查的知識點為導(dǎo)數(shù)的定義.

由題設(shè)知f'(x0)=1,又由題設(shè)條件知

可知應(yīng)選B.

20.A

21.C解析:

22.A本題考查了等價無窮小的知識點。

23.D

24.A本題考查的知識點為交換二次積分的積分次序.

由所給二次積分限可知積分區(qū)域D的不等式表達式為:

0≤x≤1,0≤y≤1-x,

其圖形如圖1-1所示.

交換積分次序,D可以表示為

0≤y≤1,0≤x≤1-y,

因此

可知應(yīng)選A.

25.D本題考查了二次曲面的知識點。

26.D

27.D本題考查了函數(shù)的極值的知識點。

28.B

29.C

30.D對照標(biāo)準(zhǔn)二次曲面的方程可知x2+3y2+3x2=1表示橢球面,故選D.

31.B

32.D

33.A

34.C

35.A

36.C

37.D

38.Bf(x)是可積的偶函數(shù);設(shè)令t=-u,是奇函數(shù)。

39.B

40.B

41.42.12dx+4dy.

本題考查的知識點為求函數(shù)在一點處的全微分.

43.

44.

45.

解析:

46.

47.發(fā)散

48.3/23/2解析:49.解析:

50.6x26x2

解析:

51.

52.2x53.x—arctanx+C.

本題考查的知識點為不定積分的運算.

54.

55.7

56.e-3/2

57.y

58.

59.(-∞2)(-∞,2)解析:

60.61.因為z=x2+3xy+y2+2x,

62.22解析:

63.

解析:

64.e1/2e1/2

解析:

65.

66.-1

67.2

68.11解析:本題考查的知識點為函數(shù)在一點處導(dǎo)數(shù)的定義.

由于f'(1)=2,可知

69.90

70.

71.

72.f(x)+Cf(x)+C解析:73.(0,0)本題考查的知識點為求曲線的拐點.

依求曲線拐點的一般步驟,只需

(1)先求出y".

(2)令y"=0得出x1,…,xk.

(3)判定在點x1,x2,…,xk兩側(cè),y"的符號是否異號.若在xk的兩側(cè)y"異號,則點(xk,f(xk)為曲線y=f(x)的拐點.

y=x3-6x,

y'=3x2-6,y"=6x.

令y"=0,得到x=0.當(dāng)x=0時,y=0.

當(dāng)x<0時,y"<0;當(dāng)x>0時,y">0.因此點(0,0)為曲線y=x3-6x的拐點.

本題出現(xiàn)較多的錯誤為:填x=0.這個錯誤產(chǎn)生的原因是對曲線拐點的概念不清楚.拐點的定義是:連續(xù)曲線y=f(x)上的凸與凹的分界點稱之為曲線的拐點.其一般形式為(x0,f(x0)),這是應(yīng)該引起注意的,也就是當(dāng)判定y"在x0的兩側(cè)異號之后,再求出f(x0),則拐點為(x0,f(x0)).

注意極值點與拐點的不同之處!

74.

75.2

76.

77.(-22)(-2,2)解析:

78.1本題考查了收斂半徑的知識點。

79.

80.y-2=3(x-1)(或?qū)憺閥=3x-1)y-2=3(x-1)(或?qū)憺閥=3x-1)解析:

81.(03)(0,3)解析:82.y=C1+C2e-x,其中C1,C2為任意常數(shù)本題考查的知識點為二階線性常系數(shù)齊次微分方程的求解.

二階線性常系數(shù)齊次微分方程求解的一般步驟為:先寫出特征方程,求出特征根,再寫出方程的通解.

微分方程為y"+y'=0.

特征方程為r3+r=0.

特征根r1=0.r2=-1.

因此所給微分方程的通解為

y=C1+C2e-x,

其牛C1,C2為任意常數(shù).

83.22解析:

84.285.

本題考查的知識點為定積分計算.

可以利用變量替換,令u=2x,則du=2dx,當(dāng)x=0時,u=0;當(dāng)x=1時,u=2.因此

86.0

87.

88.y=1

89.1/(1-x)2

90.=xylnx.yz+xy.zyz-1=xyz-1y(ylnx+z)。

91.

92.

93.

94.由二重積分物理意義知

95.

96.由一階線性微分方程通解公式有

97.

98.

99.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時,價格上漲1%需求量減少2.5%

100.

列表:

說明

101.

102.由等價無窮小量的定義可知

103.

104.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,

105.106.曲線方程為,點(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

107.

108.

109.函數(shù)的定義域為

注意

110.

111.112.所給曲線圍成的圖形如圖8-

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論