版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022年四川省德陽(yáng)市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(20題)1.設(shè)函數(shù)f(x)在區(qū)間(0,1)內(nèi)可導(dǎo),f'(x)>0,則在(0,1)內(nèi)f(x)().A.單調(diào)增加B.單調(diào)減少C.為常量D.既非單調(diào),也非常量
2.方程x2+y2-z2=0表示的二次曲面是()。
A.球面B.旋轉(zhuǎn)拋物面C.圓柱面D.圓錐面
3.A.A.lnx+CB.-lnx+CC.f(lnx)+CD.-f(lnx)+C
4.
5.A.A.sinx+sin2B.-sinx+sin2C.sinxD.-sinx
6.方程y'-3y'+2y=xe2x的待定特解y*應(yīng)取().A.A.Axe2x
B.(Ax+B)e2x
C.Ax2e2x
D.x(Ax+B)e2x
7.下列命題不正確的是()。
A.兩個(gè)無(wú)窮大量之和仍為無(wú)窮大量
B.上萬(wàn)個(gè)無(wú)窮小量之和仍為無(wú)窮小量
C.兩個(gè)無(wú)窮大量之積仍為無(wú)窮大量
D.兩個(gè)有界變量之和仍為有界變量
8.
9.A.-1
B.1
C.
D.2
10.
A.
B.1
C.2
D.+∞
11.設(shè)函數(shù)f(x)=2sinx,則f'(x)等于().A.A.2sinxB.2cosxC.-2sinxD.-2cosx.
12.微分方程y'=x的通解為A.A.2x2+C
B.x2+C
C.(1/2)x2+C
D.2x+C
13.用待定系數(shù)法求微分方程y"-y=xex的一個(gè)特解時(shí),特解的形式是(式中α、b是常數(shù))。A.(αx2+bx)ex
B.(αx2+b)ex
C.αx2ex
D.(αx+b)ex
14.當(dāng)x→0時(shí),x是ln(1+x2)的
A.高階無(wú)窮小B.同階但不等價(jià)無(wú)窮小C.等價(jià)無(wú)窮小D.低階無(wú)窮小
15.
16.設(shè)f(x)在x=0處有二階連續(xù)導(dǎo)數(shù)
則x=0是f(x)的()。
A.間斷點(diǎn)B.極大值點(diǎn)C.極小值點(diǎn)D.拐點(diǎn)
17.設(shè)f(x)在點(diǎn)x0處連續(xù),則下面命題正確的是()A.A.
B.
C.
D.
18.A.A.4B.-4C.2D.-2
19.A.A.1
B.1/m2
C.m
D.m2
20.A.1/2f(2x)+CB.f(2x)+CC.2f(2x)+CD.1/2f(x)+C
二、填空題(20題)21.
22.
23.設(shè)函數(shù)f(x)有一階連續(xù)導(dǎo)數(shù),則∫f'(x)dx=_________。
24.
25.函數(shù)f(x)=2x2-x+1,在區(qū)間[-1,2]上滿足拉格朗日中值定理的ξ=_________。
26.微分方程y'+9y=0的通解為______.
27.
28.
29.設(shè)y=1nx,則y'=__________.
30.設(shè),則f'(x)=______.
31.
32.
33.
34.微分方程xdx+ydy=0的通解是__________。
35.
36.
37.
38.
39.
40.過(guò)點(diǎn)M1(1,2,-1)且與平面x-2y+4z=0垂直的直線方程為_________.
三、計(jì)算題(20題)41.
42.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
43.求微分方程y"-4y'+4y=e-2x的通解.
44.
45.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.
46.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.
47.
48.
49.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).
50.將f(x)=e-2X展開為x的冪級(jí)數(shù).
51.求微分方程的通解.
52.證明:
53.求曲線在點(diǎn)(1,3)處的切線方程.
54.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則
55.
56.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
57.
58.
59.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.
60.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.
四、解答題(10題)61.求由曲線y=2-x2,y=2x-1及x≥0圍成的平面圖形的面積S,以及此平面圖形繞x軸旋轉(zhuǎn)所成旋轉(zhuǎn)體的體積.
62.
63.
64.
65.
66.
67.
68.
69.
70.
五、高等數(shù)學(xué)(0題)71.
六、解答題(0題)72.
參考答案
1.A由于f(x)在(0,1)內(nèi)有f'(x)>0,可知f(x)在(0,1)內(nèi)單調(diào)增加,故應(yīng)選A.
2.D因方程可化為,z2=x2+y2,由方程可知它表示的是圓錐面.
3.C
4.A解析:
5.D
6.D本題考查的知識(shí)點(diǎn)為二階常系數(shù)線性非齊次微分方程特解y*的取法:
若自由項(xiàng)f(x)=Pn(x)eαx,當(dāng)α不為特征根時(shí),可設(shè)特解為
y*=Qn(x)eαx,
Qn(x)為x的待定n次多項(xiàng)式.
當(dāng)α為單特征根時(shí),可設(shè)特解為
y*=xQn(x)eαx,
當(dāng)α為二重特征根時(shí),可設(shè)特解為
y*=x2Qn(x)eαx.
所給方程對(duì)應(yīng)齊次方程的特征方程為
r2-3r+2=0.
特征根為r1=1,r2=2.
自由項(xiàng)f(x)=xe2x,相當(dāng)于α=2為單特征根.又因?yàn)镻n(x)為一次式,因此應(yīng)選D.
7.A∵f(x)→∞;g(x)→∞∴f(x)+g(x)是不定型,不一定是無(wú)窮大。
8.B
9.A
10.C
11.B本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的運(yùn)算.
f(x)=2sinx,
f'(x)=2(sinx)'=2cosx,
可知應(yīng)選B.
12.C
13.Ay"-y=0的特征方程是r2-1=0,特征根為r1=1,r2=-1
y"-y=xex中自由項(xiàng)f(x)=xex,α=1是特征單根,應(yīng)設(shè)y*=x(ax+b)ex=(αx2+bx)ex。
所以選A。
14.D解析:
15.A
16.C則x=0是f(x)的極小值點(diǎn)。
17.C本題考查的知識(shí)點(diǎn)有兩個(gè):連續(xù)性與極限的關(guān)系;連續(xù)性與可導(dǎo)的關(guān)系.
連續(xù)性的定義包含三個(gè)要素:若f(x)在點(diǎn)x0處連續(xù),則
(1)f(x)在點(diǎn)x0處必定有定義;
(2)必定存在;
(3)
由此可知所給命題C正確,A,B不正確.
注意連續(xù)性與可導(dǎo)的關(guān)系:可導(dǎo)必定連續(xù);連續(xù)不一定可導(dǎo),可知命題D不正確.故知,應(yīng)選C.
本題常見的錯(cuò)誤是選D.這是由于考生沒(méi)有正確理解可導(dǎo)與連續(xù)的關(guān)系.
若f(x)在點(diǎn)x0處可導(dǎo),則f(x)在點(diǎn)x0處必定連續(xù).
但是其逆命題不成立.
18.D
19.D本題考查的知識(shí)點(diǎn)為重要極限公式或等價(jià)無(wú)窮小代換.
解法1由可知
解法2當(dāng)x→0時(shí),sinx~x,sinmx~mx,因此
20.A本題考查了導(dǎo)數(shù)的原函數(shù)的知識(shí)點(diǎn)。
21.(00)
22.1.
本題考查的知識(shí)點(diǎn)為函數(shù)連續(xù)性的概念.
23.f(x)+C
24.
25.1/2
26.y=Ce-9x本題考查的知識(shí)點(diǎn)為求解可分離變量微分方程.
分離變量
兩端分別積分
lny=-9x+C1,y=Ce-9x.
27.(-33)(-3,3)解析:
28.2
29.
30.
本題考查的知識(shí)點(diǎn)為復(fù)合函數(shù)導(dǎo)數(shù)的運(yùn)算.
31.e;本題考查的知識(shí)點(diǎn)為極限的運(yùn)算.
注意:可以變形,化為形式的極限.但所給極限通??梢韵茸冃危?/p>
32.
33.1/e1/e解析:
34.x2+y2=C
35.
36.
37.3(x-1)-(y+2)+z=0(或3x-y+z=5).
本題考查的知識(shí)點(diǎn)為平面與直線的方程.
由題設(shè)條件可知應(yīng)該利用點(diǎn)法式方程來(lái)確定所求平面方程.
所給直線z的方向向量s=(3,-1,1).若所求平面π垂直于直線1,則平面π的法向量n∥s,不妨取n=s=(3,-1,1).則由平面的點(diǎn)法式方程可知
3(x-1)-[y-(-2)]+(z-0)=0,
即3(x-1)-(y+2)+z=0
為所求平面方程.
或?qū)憺?x-y+z-5=0.
上述兩個(gè)結(jié)果都正確,前者3(x-1)-(y+2)+z=0稱為平面的點(diǎn)法式方程,而后者3x-y+z-5=0
稱為平面的-般式方程.
38.2
39.4π
40.
41.
42.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
43.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
44.由一階線性微分方程通解公式有
45.由二重積分物理意義知
46.
47.
48.
則
49.
列表:
說(shuō)明
50.
51.
52.
53.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
54.由等價(jià)無(wú)窮小量的定義可知
55.
56.
57.
58.
59.
60.函數(shù)的定義域?yàn)?/p>
注意
61.如圖10-2
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 玉溪師范學(xué)院《網(wǎng)球主項(xiàng)》2021-2022學(xué)年第一學(xué)期期末試卷
- 玉溪師范學(xué)院《社會(huì)體育指導(dǎo)員培訓(xùn)》2021-2022學(xué)年第一學(xué)期期末試卷
- 化學(xué)第十章烴教案
- 測(cè)量?jī)x器賬務(wù)處理實(shí)例-記賬實(shí)操
- 水泥基滲透結(jié)晶防水涂料施工指南
- 欣賞竹子課件
- 2024年電子、通信產(chǎn)品及軟件批發(fā)服務(wù)項(xiàng)目成效分析報(bào)告
- 2024年羥丙纖維素項(xiàng)目評(píng)估分析報(bào)告
- 2019粵教版 高中美術(shù) 選擇性必修2 中國(guó)書畫《第四單元 意境深邃的山水畫》大單元整體教學(xué)設(shè)計(jì)2020課標(biāo)
- 財(cái)務(wù)部協(xié)調(diào)營(yíng)運(yùn)部合同
- 高三家長(zhǎng)會(huì)班主任發(fā)言稿課件
- 醫(yī)療質(zhì)量管理與持續(xù)改進(jìn)記錄表
- 最新《輔酶q10》課件
- 二 年級(jí)上冊(cè)美術(shù)課件-《雪花飄飄》|北京課改版 (共25張PPT)
- 西方醫(yī)學(xué)史概要課件
- 分布式光伏屋頂調(diào)查表
- 新中國(guó)十大元帥!課件
- SAP成本核算與成本控制課件
- 幼兒園小朋友認(rèn)識(shí)醫(yī)生和護(hù)士課件
- 岳陽(yáng)樓記詩(shī)歌朗誦背景課件
- 2022年消防安全知識(shí)考試題庫(kù)及答案
評(píng)論
0/150
提交評(píng)論