版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022年江西省撫州市成考專升本高等數(shù)學(xué)一自考測(cè)試卷(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(50題)1.
2.設(shè)y=2x,則dy=A.A.x2x-1dx
B.2xdx
C.(2x/ln2)dx
D.2xln2dx
3.設(shè)f(x)為區(qū)間[a,b]上的連續(xù)函數(shù),則曲線y=f(x)與直線x=a,x=b,y=0所圍成的封閉圖形的面積為()。A.
B.
C..
D.不能確定
4.
5.
6.A.A.2B.1C.0D.-1
7.
8.函數(shù)y=ex+e-x的單調(diào)增加區(qū)間是
A.(-∞,+∞)B.(-∞,0]C.(-1,1)D.[0,+∞)9.A.
B.
C.
D.
10.
11.
12.設(shè)Y=e-3x,則dy等于().
A.e-3xdx
B.-e-3xdx
C.-3e-3xdx
D.3e-3xdx
13.設(shè)lnx是f(x)的一個(gè)原函數(shù),則f'(x)=()。A.
B.
C.
D.
14.A.2B.-2C.-1D.115.下列命題中正確的有()A.A.
B.
C.
D.
16.
17.設(shè)f(x)在點(diǎn)x0的某鄰域內(nèi)有定義,且,則f'(x0)等于().A.-1B.-1/2C.1/2D.1
18.
19.函數(shù)f(x)=lnz在區(qū)間[1,2]上拉格朗日公式中的ε等于()。
A.ln2
B.ln1
C.lne
D.
20.微分方程y"-y=ex的一個(gè)特解應(yīng)具有的形式為(下列各式中α、b為常數(shù))。A.aex
B.axex
C.aex+bx
D.axex+bx
21.
22.方程x2+y2-z2=0表示的二次曲面是()。
A.球面B.旋轉(zhuǎn)拋物面C.圓柱面D.圓錐面
23.設(shè)函數(shù)f(x)在[0,b]連續(xù),在(a,b)可導(dǎo),f′(x)>0.若f(a)·f(b)<0,則y=f(x)在(a,b)().
A.不存在零點(diǎn)
B.存在唯一零點(diǎn)
C.存在極大值點(diǎn)
D.存在極小值點(diǎn)
24.過點(diǎn)(0,2,4)且平行于平面x+2z=1,y-3z=2的直線方程為
A.
B.
C.
D.-2x+3(y-2)+z-4=0
25.A.A.4πB.3πC.2πD.π26.平面的位置關(guān)系為()。A.垂直B.斜交C.平行D.重合
27.f(x)在[a,b]上可導(dǎo)是f(x)在[a,b]上可積的()。
A.充要條件B.充分條件C.必要條件D.無關(guān)條件
28.
29.A.A.連續(xù)點(diǎn)
B.
C.
D.
30.若,則()。A.-1B.0C.1D.不存在
31.過點(diǎn)(1,0,0),(0,1,0),(0,0,1)的平面方程為().
A.x+y+z=1
B.2x+y+z=1
C.x+2y+z=1
D.x+y+2z=1
32.A.A.
B.
C.
D.
33.設(shè)D={(x,y){|x2+y2≤a2,a>0,y≥0),在極坐標(biāo)下二重積分(x2+y2)dxdy可以表示為()A.∫0πdθ∫0ar2dr
B.∫0πdθ∫0ar3drC.D.34.設(shè)y=f(x)在(a,b)內(nèi)有二階導(dǎo)數(shù),且f"<0,則曲線y=f(x)在(a,b)內(nèi)().A.A.凹B.凸C.凹凸性不可確定D.單調(diào)減少
35.
36.下列命題不正確的是()。
A.兩個(gè)無窮大量之和仍為無窮大量
B.上萬個(gè)無窮小量之和仍為無窮小量
C.兩個(gè)無窮大量之積仍為無窮大量
D.兩個(gè)有界變量之和仍為有界變量
37.A.dx+dyB.1/3·(dx+dy)C.2/3·(dx+dy)D.2(dx+dy)
38.
39.函數(shù)y=ln(1+x2)的單調(diào)增加區(qū)間是()。A.(-5,5)B.(-∞,0)C.(0,+∞)D.(-∞,+∞)
40.
A.絕對(duì)收斂B.條件收斂C.發(fā)散D.收斂性與a有關(guān)
41.
42.設(shè)f(x)在x=2處可導(dǎo),且f'(2)=2,則等于().A.A.1/2B.1C.2D.443.交換二次積分次序等于().A.A.
B.
C.
D.
44.
A.f(x)
B.f(x)+C
C.f/(x)
D.f/(x)+C
45.A.A.絕對(duì)收斂B.條件收斂C.發(fā)散D.收斂性與口有關(guān)46.A.A.2/3B.3/2C.2D.3
47.
48.A.e-2
B.e-1
C.e
D.e2
49.
50.設(shè)y=2x3,則dy=()
A.2x2dx
B.6x2dx
C.3x2dx
D.x2dx
二、填空題(20題)51.
52.53.設(shè)區(qū)域D由曲線y=x2,y=x圍成,則二重積分54.設(shè),則y'=______。55.
56.
57.過坐標(biāo)原點(diǎn)且與平面2x-y+z+1=0平行的平面方程為______.
58.59.
60.
61.設(shè)函數(shù)y=x2lnx,則y=__________.
62.
sint2dt=________。63.級(jí)數(shù)的收斂半徑為______.
64.通解為C1e-x+C2e-2x的二階常系數(shù)線性齊次微分方程是____.
65.
66.
67.微分方程y"+y=0的通解為______.68.y=ln(1+x2)的單調(diào)增加區(qū)間為______.
69.
70.設(shè)f(x)=e5x,則f(x)的n階導(dǎo)數(shù)f(n)(x)=__________.
三、計(jì)算題(20題)71.
72.求微分方程y"-4y'+4y=e-2x的通解.
73.求微分方程的通解.74.
75.
76.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.77.78.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.79.求曲線在點(diǎn)(1,3)處的切線方程.
80.
81.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則82.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
83.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.84.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.
85.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
86.87.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).88.將f(x)=e-2X展開為x的冪級(jí)數(shù).89.證明:90.四、解答題(10題)91.
92.求微分方程y"-4y'+4y=e-2x的通解。
93.
94.
95.計(jì)算96.求y"+4y'+4y=e-x的通解.97.
98.
99.
100.設(shè)D是由曲線x=1-y2與x軸、y軸,在第一象限圍成的有界區(qū)域.求:(1)D的面積S;(2)D繞x軸旋轉(zhuǎn)所得旋轉(zhuǎn)體的體積V.
五、高等數(shù)學(xué)(0題)101.求
的極值。
六、解答題(0題)102.求曲線y=sinx、y=cosx、直線x=0在第一象限所圍圖形的面積A及該圖形繞x軸旋轉(zhuǎn)一周所得旋轉(zhuǎn)體的體積Vx。
參考答案
1.D解析:
2.Dy=2x,y'=2xln2,dy=y'dx=2xln2dx,故選D。
3.B本題考查的知識(shí)點(diǎn)為定積分的幾何意義。由定積分的幾何意義可知應(yīng)選B。常見的錯(cuò)誤是選C。如果畫個(gè)草圖,則可以避免這類錯(cuò)誤。
4.B
5.B
6.Df(x)為分式,當(dāng)x=-1時(shí),分母x+1=0,分式?jīng)]有意義,因此點(diǎn)
x=-1為f(x)的間斷點(diǎn),故選D。
7.C
8.Dy=ex+e-x,則y'=ex-e-x,當(dāng)x>0時(shí),y'>0,所以y在區(qū)間[0,+∞)上單調(diào)遞增.
9.D本題考查的知識(shí)點(diǎn)為牛頓一萊布尼茨公式和定積分的換元法。因此選D。
10.C
11.A
12.C
13.C
14.A
15.B
16.B
17.B由導(dǎo)數(shù)的定義可知
可知,故應(yīng)選B。
18.A
19.D由拉格朗日定理
20.B方程y"-y=0的特征方程是r2-1=0,特征根為r1=1,r2=-1。
方程y"-y=ex中自由項(xiàng)f1(x)=ex,α=1是特征單根,故應(yīng)設(shè)定y*=αxex,因此選B。
21.A
22.D因方程可化為,z2=x2+y2,由方程可知它表示的是圓錐面.
23.B由于f(x)在[a,b]上連續(xù)f(z)·fb)<0,由閉區(qū)間上連續(xù)函數(shù)的零點(diǎn)定理可知,y=f(x)在(a,b)內(nèi)至少存在一個(gè)零點(diǎn).又由于f(x)>0,可知f(x)在(a,b)內(nèi)單調(diào)增加,因此f(x)在(a,b)內(nèi)如果有零點(diǎn),則至多存在一個(gè).
綜合上述f(x)在(a,b)內(nèi)存在唯一零點(diǎn),故選B.
24.C
25.A
26.A本題考查的知識(shí)點(diǎn)為兩平面的關(guān)系。兩平面的關(guān)系可由兩平面的法向量,n1,n2間的關(guān)系確定。若n1⊥n2,則兩平面必定垂直.若時(shí),兩平面平行;
當(dāng)時(shí),兩平面重合。若n1與n2既不垂直,也不平行,則兩平面斜交。由于n1=(1,-2,3),n2=(2,1,0),n1·n2=0,可知n1⊥n2,因此π1⊥π2,應(yīng)選A。
27.B∵可導(dǎo)一定連續(xù),連續(xù)一定可積;反之不一定?!嗫蓪?dǎo)是可積的充分條件
28.C
29.C解析:
30.D不存在。
31.A設(shè)所求平面方程為.由于點(diǎn)(1,0,0),(0,1,0),(0,0,1)都在平面上,將它們的坐標(biāo)分別代入所設(shè)平面方程,可得方程組
故選A.
32.B本題考查的知識(shí)點(diǎn)為定積分運(yùn)算.
因此選B.
33.B因?yàn)镈:x2+y2≤a2,a>0,y≥0,令則有r2≤a2,0≤r≤a,0≤θ≤π,所以(x2+y2)dxdy=∫0πdθ∫0ar2.rdr=∫0πdθ∫0ar3.rdr故選B。
34.A本題考查的知識(shí)點(diǎn)為利用二階導(dǎo)數(shù)符號(hào)判定曲線的凹凸性.
由于在(a,b)區(qū)間內(nèi)f"(x)<0,可知曲線y=f(x)在(a,b)內(nèi)為凹的,因此選A.
35.B
36.A∵f(x)→∞;g(x)→∞∴f(x)+g(x)是不定型,不一定是無窮大。
37.C本題考查了二元函數(shù)的全微分的知識(shí)點(diǎn),
38.A
39.C本題考查的知識(shí)點(diǎn)為判定函數(shù)的單調(diào)性。
y=ln(1+x2)的定義域?yàn)?-∞,+∞)。
當(dāng)x>0時(shí),y'>0,y為單調(diào)增加函數(shù),
當(dāng)x<0時(shí),y'<0,y為單調(diào)減少函數(shù)。
可知函數(shù)y=ln(1+x2)的單調(diào)增加區(qū)間是(0,+∞),故應(yīng)選C。
40.A
本題考查的知識(shí)點(diǎn)為級(jí)數(shù)絕對(duì)收斂與條件收斂的概念.
41.B
42.B本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)在一點(diǎn)處的定義.
可知應(yīng)選B.
43.B本題考查的知識(shí)點(diǎn)為交換二次積分次序.
由所給二次積分可知積分區(qū)域D可以表示為
1≤y≤2,y≤x≤2,
交換積分次序后,D可以表示為
1≤x≤2,1≤y≤x,
故應(yīng)選B.
44.A由不定積分的性質(zhì)“先積分后求導(dǎo),作用抵消”可知應(yīng)選A.
45.A
46.A
47.A解析:
48.D由重要極限公式及極限運(yùn)算性質(zhì),可知故選D.
49.B
50.B
51.(12)
52.53.本題考查的知識(shí)點(diǎn)為計(jì)算二重積分.積分區(qū)域D可以表示為:0≤x≤1,x2≤y≤x,因此
54.本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的運(yùn)算。
55.本題考查了一元函數(shù)的一階導(dǎo)數(shù)的知識(shí)點(diǎn)。
56.(-22)(-2,2)解析:57.已知平面的法線向量n1=(2,-1,1),所求平面與已知平面平行,可設(shè)所求平面方程為2x-y+z+D=0,將x=0,y=0,z=0代入上式,可得D=0,因此所求平面方程為2x-y+z=0.
58.
59.
60.
61.
62.
63.本題考查的知識(shí)點(diǎn)為冪級(jí)數(shù)的收斂半徑.
所給級(jí)數(shù)為缺項(xiàng)情形,由于
64.
65.1
66.
67.y=C1cosx+C2sinx本題考查的知識(shí)點(diǎn)為二階線性常系數(shù)齊次微分方程的求解.
特征方程為r2+1=0,特征根為r=±i,因此所給微分方程的通解為y=C1cosx+C2sinx.68.(0,+∞)本題考查的知識(shí)點(diǎn)為利用導(dǎo)數(shù)符號(hào)判定函數(shù)的單調(diào)性.
由于y=ln(1+x2),其定義域?yàn)?-∞,+∞).
又由于,令y'=0得唯一駐點(diǎn)x=0.
當(dāng)x>0時(shí),總有y'>0,從而y單調(diào)增加.
可知y=ln(1+x2)的單調(diào)增加區(qū)間為(0,+∞).
69.
解析:
70.
71.
則
72.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
73.74.由一階線性微分方程通解公式有
75.
76.
77.
78.函數(shù)的定義域?yàn)?/p>
注意
79.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
80.81.由等價(jià)無窮小量的定義可知
82.
83.
84.由二重積分物理意義知
85.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
86.
87.
列表:
說明
88.
89.
90.
91.
92.
93.
94.
95.96.相應(yīng)的齊次方程為y"+4y'+4y=0,特征方程為r2+4r+4=0,即(r+2)2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 【正版授權(quán)】 ISO/TS 21219-13:2025 EN Intelligent transport systems - Traffic and travel information via transport protocol experts group,generation 2 (TPEG2) - Part 13: Public transport
- 2025標(biāo)準(zhǔn)農(nóng)田建設(shè)合同管理的任務(wù)和方法
- 2025員工個(gè)人勞動(dòng)合同
- 2025年度房屋置換增值服務(wù)全新房屋置換對(duì)方房屋置換及增值合同3篇
- 2025農(nóng)村合作建房項(xiàng)目施工臨時(shí)用電安全合同2篇
- 二零二五年度公司股權(quán)轉(zhuǎn)讓及后續(xù)管理服務(wù)合同3篇
- 二零二五年度房地產(chǎn)項(xiàng)目合作合同解除協(xié)議2篇
- 二零二五年度農(nóng)產(chǎn)品批發(fā)市場(chǎng)租賃合作合同3篇
- 二零二五年度智能家居產(chǎn)品開發(fā)合作協(xié)議書3篇
- 二零二五年度辦公室租賃合同模板:含員工激勵(lì)及福利計(jì)劃3篇
- 部編人教版四年級(jí)數(shù)學(xué)上冊(cè)期末考試卷(可打印)
- 一例阿爾茨海默病患者的護(hù)理查房
- 農(nóng)貿(mào)市場(chǎng)安全生產(chǎn)工作方案
- 咸陽租房合同
- 《鋼筋保護(hù)層檢測(cè)》課件
- YJ-T 27-2024 應(yīng)急指揮通信保障能力建設(shè)規(guī)范
- 合伙人協(xié)議書決策機(jī)制
- 西藏畜牧獸醫(yī)知識(shí)培訓(xùn)課件
- 護(hù)理專業(yè)人才培養(yǎng)方案論證報(bào)告
- 我的家鄉(xiāng)武漢
- 眼鏡制造業(yè)灌膠機(jī)市場(chǎng)前景與機(jī)遇分析
評(píng)論
0/150
提交評(píng)論