版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2022年湖北省荊州市普通高校對口單招高等數(shù)學(xué)一自考模擬考試(含答案)學(xué)校:________班級:________姓名:________考號(hào):________
一、單選題(20題)1.若x→x0時(shí),α(x)、β(x)都是無窮小(β(x)≠0),則x→x0時(shí),α(x)/β(x)A.A.為無窮小B.為無窮大C.不存在,也不是無窮大D.為不定型
2.微分方程y'=x的通解為A.A.2x2+C
B.x2+C
C.(1/2)x2+C
D.2x+C
3.
A.6xarctanx2
B.6xtanx2+5
C.5
D.6xcos2x
4.已知斜齒輪上A點(diǎn)受到另一齒輪對它作用的捏合力Fn,F(xiàn)n沿齒廓在接觸處的公法線方向,且垂直于過A點(diǎn)的齒面的切面,如圖所示,α為壓力角,β為斜齒輪的螺旋角。下列關(guān)于一些力的計(jì)算有誤的是()。
A.圓周力FT=Fncosαcosβ
B.徑向力Fa=Fncosαcosβ
C.軸向力Fr=Fncosα
D.軸向力Fr=Fnsinα
5.搖篩機(jī)如圖所示,已知O1B=O2B=0.4m,O1O2=AB,桿O1A按
規(guī)律擺動(dòng),(式中∮以rad計(jì),t以s計(jì))。則當(dāng)t=0和t=2s時(shí),關(guān)于篩面中點(diǎn)M的速度和加速度就散不正確的一項(xiàng)為()。
A.當(dāng)t=0時(shí),篩面中點(diǎn)M的速度大小為15.7cm/s
B.當(dāng)t=0時(shí),篩面中點(diǎn)M的法向加速度大小為6.17cm/s2
C.當(dāng)t=2s時(shí),篩面中點(diǎn)M的速度大小為0
D.當(dāng)t=2s時(shí),篩面中點(diǎn)M的切向加速度大小為12.3cm/s2
6.
7.A.0B.2C.2f(-1)D.2f(1)
8.平面的位置關(guān)系為()。A.垂直B.斜交C.平行D.重合
9.函數(shù)y=sinx在區(qū)間[0,π]上滿足羅爾定理的ξ等于()。A.0
B.
C.
D.π
10.()。A.e-6
B.e-2
C.e3
D.e6
11.A.A.
B.
C.
D.
12.
13.設(shè)在點(diǎn)x=1處連續(xù),則a等于()。A.-1B.0C.1D.2
14.
15.A.2B.2xC.2yD.2x+2y
16.微分方程y'+y=0的通解為()。A.y=ex
B.y=e-x
C.y=Cex
D.y=Ce-x
17.下列關(guān)系正確的是()。A.
B.
C.
D.
18.A.A.
B.
C.
D.
19.
A.
B.
C.
D.
20.()A.A.1B.2C.1/2D.-1
二、填空題(20題)21.
22.y=ln(1+x2)的單調(diào)增加區(qū)間為______.
23.
24.
25.設(shè)f(x)=ax3-6ax2+b在區(qū)間[-1,2]的最大值為2,最小值為-29,又知a>0,則a,b的取值為______.
26.
27.
28.
29.
30.
31.
32.設(shè)y=1nx,則y'=__________.
33.設(shè)y=f(x)在點(diǎn)x0處可導(dǎo),且在點(diǎn)x0處取得極小值,則曲線y=f(x)在點(diǎn)(x0,f(x0))處的切線方程為________。
34.
35.
36.極限=________。
37.
38.
39.
40.
三、計(jì)算題(20題)41.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
42.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
43.求曲線在點(diǎn)(1,3)處的切線方程.
44.研究級數(shù)的收斂性(即何時(shí)絕對收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.
45.
46.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.
47.將f(x)=e-2X展開為x的冪級數(shù).
48.求微分方程y"-4y'+4y=e-2x的通解.
49.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.
50.
51.
52.求微分方程的通解.
53.
54.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).
55.
56.
57.
58.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則
59.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.
60.證明:
四、解答題(10題)61.
62.計(jì)算,其中區(qū)域D滿足x2+y2≤1,x≥0,y≥0.
63.
64.
65.
66.設(shè)x2為f(x)的原函數(shù).求.
67.
68.
69.
70.
五、高等數(shù)學(xué)(0題)71.求y=2x3一9x2+12x+1在[0,3]上的最值。
六、解答題(0題)72.
參考答案
1.D
2.C
3.C
4.C
5.D
6.A解析:
7.C本題考查了定積分的性質(zhì)的知識(shí)點(diǎn)。
8.A本題考查的知識(shí)點(diǎn)為兩平面的關(guān)系。兩平面的關(guān)系可由兩平面的法向量,n1,n2間的關(guān)系確定。若n1⊥n2,則兩平面必定垂直.若時(shí),兩平面平行;
當(dāng)時(shí),兩平面重合。若n1與n2既不垂直,也不平行,則兩平面斜交。由于n1=(1,-2,3),n2=(2,1,0),n1·n2=0,可知n1⊥n2,因此π1⊥π2,應(yīng)選A。
9.C本題考查的知識(shí)點(diǎn)為羅爾定理的條件與結(jié)論。
10.A
11.B本題考查的知識(shí)點(diǎn)為定積分運(yùn)算.
因此選B.
12.C
13.C本題考查的知識(shí)點(diǎn)為函數(shù)連續(xù)性的概念。
由于y為分段函數(shù),x=1為其分段點(diǎn)。在x=1的兩側(cè)f(x)的表達(dá)式不同。因此討論y=f(x)在x=1處的連續(xù)性應(yīng)該利用左連續(xù)與右連續(xù)的概念。由于
當(dāng)x=1為y=f(x)的連續(xù)點(diǎn)時(shí),應(yīng)有存在,從而有,即
a+1=2。
可得:a=1,因此選C。
14.B
15.A
16.D可以將方程認(rèn)作可分離變量方程;也可以將方程認(rèn)作一階線性微分方程;還可以仿二階線性常系數(shù)齊次微分方程,并作為特例求解。解法1將方程認(rèn)作可分離變量方程。分離變量
兩端分別積分
或y=Ce-x解法2將方程認(rèn)作一階線性微分方程.由通解公式可得解法3認(rèn)作二階常系數(shù)線性齊次微分方程特例求解:特征方程為r+1=0,特征根為r=-1,方程通解為y=Ce-x。
17.C本題考查的知識(shí)點(diǎn)為不定積分的性質(zhì)。
18.B本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)運(yùn)算.
由于z=tan(xy),因此
可知應(yīng)選B.
19.C本題考查的知識(shí)點(diǎn)為復(fù)合函數(shù)導(dǎo)數(shù)的運(yùn)算.
由復(fù)合函數(shù)的導(dǎo)數(shù)鏈?zhǔn)椒▌t知
可知應(yīng)選C.
20.C由于f'(2)=1,則
21.2xsinx2;本題考查的知識(shí)點(diǎn)為可變上限積分的求導(dǎo).
22.(0,+∞)本題考查的知識(shí)點(diǎn)為利用導(dǎo)數(shù)符號(hào)判定函數(shù)的單調(diào)性.
由于y=ln(1+x2),其定義域?yàn)?-∞,+∞).
又由于,令y'=0得唯一駐點(diǎn)x=0.
當(dāng)x>0時(shí),總有y'>0,從而y單調(diào)增加.
可知y=ln(1+x2)的單調(diào)增加區(qū)間為(0,+∞).
23.
本題考查的知識(shí)點(diǎn)為冪級數(shù)的收斂半徑.
注意此處冪級數(shù)為缺項(xiàng)情形.
24.
25.
f'(x)=3ax2-12ax,f'(x)=0,則x=0或x=4,而x=4不在[-1,2]中,故舍去.f''(x)=6ax-12a,f''(0)=-12a,因?yàn)閍>0,所以,f''(0)<0,所以x=0是極值點(diǎn).又因f(-1)=-a-6a+b=b-7a,f(0)=b,f(2)=8a-24a+b=b-16a,因?yàn)閍>0,故當(dāng)x=0時(shí),f(x)最大,即b=2;當(dāng)x=2時(shí),f(x)最小.所以b-16a=-29,即16a=2+29=31,故a=.
26.
本題考查的知識(shí)點(diǎn)為兩個(gè):參數(shù)方程形式的函數(shù)求導(dǎo)和可變上限積分求導(dǎo).
27.1.
本題考查的知識(shí)點(diǎn)為二元函數(shù)的極值.
可知點(diǎn)(0,0)為z的極小值點(diǎn),極小值為1.
28.
本題考查的知識(shí)點(diǎn)為極限的運(yùn)算.
若利用極限公式
如果利用無窮大量與無窮小量關(guān)系,直接推導(dǎo),可得
29.
30.本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的運(yùn)算。由于z=x2+3xy+2y2-y,可得
31.
32.
33.y=f(x0)y=f(x)在點(diǎn)x0處可導(dǎo),且y=f(x)有極小值f(x0),這意味著x0為f(x)的極小值點(diǎn)。由極值的必要條件可知,必有f"(x0)=0,因此曲線y=f(x)在點(diǎn)(x0,f(x0))處的切線方程為y-f(x0)=f(x0)(x-x0)=0,即y=f(x0)為所求切線方程。
34.
35.
解析:
36.因?yàn)樗髽O限中的x的變化趨勢是趨近于無窮,因此它不是重要極限的形式,由于=0,即當(dāng)x→∞時(shí),為無窮小量,而cosx-1為有界函數(shù),利用無窮小量性質(zhì)知
37.6x2
38.
39.本題考查的知識(shí)點(diǎn)為定積分的基本公式。
40.
本題考查的知識(shí)點(diǎn)為定積分的換元法.
解法1
解法2
令t=1+x2,則dt=2xdx.
當(dāng)x=1時(shí),t=2;當(dāng)x=2時(shí),t=5.
這里的錯(cuò)誤在于進(jìn)行定積分變量替換,積分區(qū)間沒做變化.
41.
42.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
43.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
44.
45.
46.函數(shù)的定義域?yàn)?/p>
注意
47.
48.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,
49.由二重積分物理意義知
50.
則
51.
52.
53.
54.
列表:
說明
55.由一階線性微分方程通解公式有
56.
57.
58.由等價(jià)無窮小量的定義可知
59.
60.
61.
62.積分區(qū)域D如圖2-1所示.
解法1利用極坐標(biāo)系.D可以表示為:
解法2利用直角坐標(biāo)系.D可以表示為:
本題考查的知識(shí)點(diǎn)為計(jì)算二重積分;選擇積分次序或利用極坐標(biāo)計(jì)算.
63.
64.
65.本題考查的知識(shí)點(diǎn)為參數(shù)方程的求導(dǎo)運(yùn)算.
【解題指導(dǎo)】
66.解法1
由于x2為f(x)的原函數(shù),因此
解法2由于x2為f(x)的原函數(shù),因此
本題考查的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024宅基地地基承包合同示范文本農(nóng)村土地經(jīng)營權(quán)轉(zhuǎn)讓協(xié)議3篇
- 2024年度制造業(yè)員工勞動(dòng)合同范本及安全生產(chǎn)協(xié)議3篇
- α-貯存池病病因介紹
- 新疆警察學(xué)院《產(chǎn)品設(shè)計(jì)進(jìn)階》2023-2024學(xué)年第一學(xué)期期末試卷
- 外籍廚師合同范例
- 推廣合同范例文本
- 駕校新員工服務(wù)培訓(xùn)
- 入股創(chuàng)業(yè)合同范例
- 閃銀借款合同范例
- 授權(quán)單位合作合同范例
- 湖北省黃石市大冶市2023-2024學(xué)年八年級上學(xué)期期末考試數(shù)學(xué)試卷(含答案)
- 村衛(wèi)生站衛(wèi)生信息管理制度模版(3篇)
- 《基層管理者職業(yè)素養(yǎng)與行為規(guī)范》考核試題及答案
- 《爆破理論基礎(chǔ)》課件
- 期末測試題二(含答案)2024-2025學(xué)年譯林版七年級英語上冊
- 中國成人失眠診斷與治療指南(2023版)解讀
- 小兒咳嗽推拿治療
- 產(chǎn)品質(zhì)量知識(shí)培訓(xùn)課件
- 乳腺旋切手術(shù)
- 醫(yī)護(hù)禮儀課件教學(xué)課件
- 2023年中國奧特萊斯行業(yè)白皮書
評論
0/150
提交評論