版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022年湖南省常德市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(20題)1.設(shè)y=cos4x,則dy=()。A.
B.
C.
D.
2.
3.方程x2+y2-z=0表示的二次曲面是()。A.橢球面B.圓錐面C.旋轉(zhuǎn)拋物面D.柱面
4.
5.
6.曲線y=1nx在點(diǎn)(e,1)處切線的斜率為().A.A.e2
B.eC.1D.1/e
7.
8.()是一個(gè)組織的精神支柱,是組織文化的核心。
A.組織的價(jià)值觀B.倫理觀C.組織精神D.組織素養(yǎng)
9.()。A.
B.
C.
D.
10.
11.設(shè)函數(shù)f(x)在[a,b]上連續(xù),且f(a)·f(b)<0,則必定存在一點(diǎn)ξ∈(a,b)使得()A.f(ξ)>0B.f(ξ)<0C.f(ξ)=0D.f(ξ)=0
12.
13.
14.A.2B.1C.1/2D.-2
15.
A.6xarctanx2
B.6xtanx2+5
C.5
D.6xcos2x
16.
17.當(dāng)x→0時(shí),3x2+2x3是3x2的()。A.高階無窮小B.低階無窮小C.同階無窮小但不是等價(jià)無窮小D.等價(jià)無窮小
18.
19.
A.2e-2x+C
B.
C.-2e-2x+C
D.
20.A.A.xy
B.yxy
C.(x+1)yln(x+1)
D.y(x+1)y-1
二、填空題(20題)21.設(shè)z=sin(x2y),則=________。
22.
23.
24.設(shè)x=f(x,y)在點(diǎn)p0(x0,y0)可微分,且p0(x0,y0)為z的極大值點(diǎn),則______.
25.
26.
27.
28.______。
29.設(shè),則f'(x)=______.
30.
31.
32.
33.
34.
35.設(shè)y=ln(x+2),貝y"=________。
36.
37.設(shè)f(x)=x(x-1),則f'(1)=__________。
38.
39.
40.
三、計(jì)算題(20題)41.
42.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
43.求微分方程y"-4y'+4y=e-2x的通解.
44.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
45.
46.求曲線在點(diǎn)(1,3)處的切線方程.
47.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.
48.
49.
50.證明:
51.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.
52.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.
53.求微分方程的通解.
54.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).
55.
56.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則
57.
58.
59.將f(x)=e-2X展開為x的冪級(jí)數(shù).
60.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.
四、解答題(10題)61.
62.
63.
64.
65.
66.
67.用鐵皮做一個(gè)容積為V的圓柱形有蓋桶,證明當(dāng)圓柱的高等于底面直徑時(shí),所使用的鐵皮面積最小。
68.設(shè)且f(x)在點(diǎn)x=0處連續(xù)b.
69.
70.
五、高等數(shù)學(xué)(0題)71.∫f(x)dx=F(x)+則∫c-xf(e-x)dx=__________。
六、解答題(0題)72.
參考答案
1.B
2.C解析:
3.C本題考查的知識(shí)點(diǎn)為二次曲面的方程。
將x2+y2-z=0與二次曲面標(biāo)準(zhǔn)方程對(duì)照,可知其為旋轉(zhuǎn)拋面,故應(yīng)選C。
4.B
5.A
6.D本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的幾何意義.
由導(dǎo)數(shù)的幾何意義可知,若y=f(x)在點(diǎn)x0處可導(dǎo),則曲線),y=f(x)在點(diǎn)(x0,f(x0))處必定存在切線,且切線的斜率為f(x0).
由于y=lnx,可知可知應(yīng)選D.
7.B解析:
8.C解析:組織精神是組織文化的核心,是一個(gè)組織的精神支柱。
9.D
10.A
11.D
12.D
13.D
14.A本題考查了等價(jià)無窮小的代換的知識(shí)點(diǎn)。
15.C
16.A解析:
17.D本題考查的知識(shí)點(diǎn)為無窮小階的比較。
由于,可知點(diǎn)x→0時(shí)3x2+2x3與3x2為等價(jià)無窮小,故應(yīng)選D。
18.B
19.D
20.C
21.設(shè)u=x2y,則z=sinu,因此=cosu.x2=x2cos(x2y)。
22.00解析:
23.22解析:
24.0本題考查的知識(shí)點(diǎn)為二元函數(shù)極值的必要條件.
由于z=f(x,y)在點(diǎn)P0(x0,y0)可微分,P(x0,y0)為z的極值點(diǎn),由極值的必要條件可知
25.
解析:
26.
本題考查的知識(shí)點(diǎn)為二階常系數(shù)線性齊次微分方程的求解.
27.本題考查的知識(shí)點(diǎn)為定積分的基本公式。
28.本題考查的知識(shí)點(diǎn)為極限運(yùn)算。
所求極限的表達(dá)式為分式,其分母的極限不為零。
因此
29.
本題考查的知識(shí)點(diǎn)為復(fù)合函數(shù)導(dǎo)數(shù)的運(yùn)算.
30.y=1y=1解析:
31.
32.2
33.3本題考查了冪級(jí)數(shù)的收斂半徑的知識(shí)點(diǎn).
所以收斂半徑R=3.
34.
35.
36.
本題考查的知識(shí)點(diǎn)為二重積分的計(jì)算.
37.
38.33解析:
39.
40.1.
本題考查的知識(shí)點(diǎn)為反常積分,應(yīng)依反常積分定義求解.
41.
42.
43.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
44.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
45.由一階線性微分方程通解公式有
46.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
47.由二重積分物理意義知
48.
49.
50.
51.
52.
53.
54.
列表:
說明
55.
56.由等價(jià)無窮小量的定義可知
57.
則
58.
59.
60.函數(shù)的定義域?yàn)?/p>
注意
61
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 10816-2024紫砂陶器
- TAT-PEG-Cy3-生命科學(xué)試劑-MCE-8780
- O-Methylcassythine-生命科學(xué)試劑-MCE-5707
- 1-2-Distearoyl-3-palmitoyl-rac-glycerol-1-2-Stearin-3-palmitin-生命科學(xué)試劑-MCE-3544
- 2025年度解除競(jìng)業(yè)限制協(xié)議通知范本及注意事項(xiàng)
- 二零二五年度版果園承包合同:果業(yè)人才培養(yǎng)與引進(jìn)合作協(xié)議
- 二零二五年度2025年度自愿調(diào)解協(xié)議書-知識(shí)產(chǎn)權(quán)侵權(quán)糾紛調(diào)解協(xié)議書
- 2025年度共享汽車使用權(quán)授權(quán)管理協(xié)議
- 二零二五年度房屋租賃合同終止及換房新約
- 施工現(xiàn)場(chǎng)管理的方法
- 輸變電工程監(jiān)督檢查標(biāo)準(zhǔn)化清單-質(zhì)監(jiān)站檢查
- 2024-2025學(xué)年北京海淀區(qū)高二(上)期末生物試卷(含答案)
- 【超星學(xué)習(xí)通】馬克思主義基本原理(南開大學(xué))爾雅章節(jié)測(cè)試網(wǎng)課答案
- 2024年中國(guó)工業(yè)涂料行業(yè)發(fā)展現(xiàn)狀、市場(chǎng)前景、投資方向分析報(bào)告(智研咨詢發(fā)布)
- 化工企業(yè)重大事故隱患判定標(biāo)準(zhǔn)培訓(xùn)考試卷(后附答案)
- 工傷賠償授權(quán)委托書范例
- 食堂餐具炊具供貨服務(wù)方案
- 員工安全健康手冊(cè)
- 自然科學(xué)基礎(chǔ)(小學(xué)教育專業(yè))全套教學(xué)課件
- 華為客服制度
- 醫(yī)美面部抗衰老注射項(xiàng)目培訓(xùn)課件
評(píng)論
0/150
提交評(píng)論