版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書(shū)寫(xiě),字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.為研究某咖啡店每日的熱咖啡銷(xiāo)售量和氣溫之間是否具有線性相關(guān)關(guān)系,統(tǒng)計(jì)該店2017年每周六的銷(xiāo)售量及當(dāng)天氣溫得到如圖所示的散點(diǎn)圖(軸表示氣溫,軸表示銷(xiāo)售量),由散點(diǎn)圖可知與的相關(guān)關(guān)系為()A.正相關(guān),相關(guān)系數(shù)的值為B.負(fù)相關(guān),相關(guān)系數(shù)的值為C.負(fù)相關(guān),相關(guān)系數(shù)的值為D.正相關(guān),相關(guān)負(fù)數(shù)的值為2.已知全集,集合,則()A. B. C. D.3.已知定點(diǎn)都在平面內(nèi),定點(diǎn)是內(nèi)異于的動(dòng)點(diǎn),且,那么動(dòng)點(diǎn)在平面內(nèi)的軌跡是()A.圓,但要去掉兩個(gè)點(diǎn) B.橢圓,但要去掉兩個(gè)點(diǎn)C.雙曲線,但要去掉兩個(gè)點(diǎn) D.拋物線,但要去掉兩個(gè)點(diǎn)4.定義域?yàn)镽的偶函數(shù)滿足任意,有,且當(dāng)時(shí),.若函數(shù)至少有三個(gè)零點(diǎn),則的取值范圍是()A. B. C. D.5.已知三點(diǎn)A(1,0),B(0,),C(2,),則△ABC外接圓的圓心到原點(diǎn)的距離為()A. B.C. D.6.已知雙曲線()的漸近線方程為,則()A. B. C. D.7.已知數(shù)列中,,且當(dāng)為奇數(shù)時(shí),;當(dāng)為偶數(shù)時(shí),.則此數(shù)列的前項(xiàng)的和為()A. B. C. D.8.在中,為邊上的中線,為的中點(diǎn),且,,則()A. B. C. D.9.下圖是我國(guó)第24~30屆奧運(yùn)獎(jiǎng)牌數(shù)的回眸和中國(guó)代表團(tuán)獎(jiǎng)牌總數(shù)統(tǒng)計(jì)圖,根據(jù)表和統(tǒng)計(jì)圖,以下描述正確的是().金牌(塊)銀牌(塊)銅牌(塊)獎(jiǎng)牌總數(shù)2451112282516221254261622125027281615592832171463295121281003038272388A.中國(guó)代表團(tuán)的奧運(yùn)獎(jiǎng)牌總數(shù)一直保持上升趨勢(shì)B.折線統(tǒng)計(jì)圖中的六條線段只是為了便于觀察圖象所反映的變化,不具有實(shí)際意義C.第30屆與第29屆北京奧運(yùn)會(huì)相比,奧運(yùn)金牌數(shù)、銀牌數(shù)、銅牌數(shù)都有所下降D.統(tǒng)計(jì)圖中前六屆奧運(yùn)會(huì)中國(guó)代表團(tuán)的奧運(yùn)獎(jiǎng)牌總數(shù)的中位數(shù)是54.510.函數(shù)在上的圖象大致為()A. B.C. D.11.已知直線過(guò)圓的圓心,則的最小值為()A.1 B.2 C.3 D.412.設(shè),則“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.《九章算術(shù)》中,將四個(gè)面都為直角三角形的四面體稱為鱉臑,如圖,在鱉臑中,平面,,且,過(guò)點(diǎn)分別作于點(diǎn),于點(diǎn),連接,則三棱錐的體積的最大值為_(kāi)_________.14.已知,則滿足的的取值范圍為_(kāi)______.15.已知數(shù)列滿足,且,則______.16.如圖,直三棱柱中,,,,P是的中點(diǎn),則三棱錐的體積為_(kāi)_______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖所示,在四面體中,,平面平面,,且.(1)證明:平面;(2)設(shè)為棱的中點(diǎn),當(dāng)四面體的體積取得最大值時(shí),求二面角的余弦值.18.(12分)如圖,在四棱錐中,底面是矩形,四條側(cè)棱長(zhǎng)均相等.(1)求證:平面;(2)求證:平面平面.19.(12分)已知六面體如圖所示,平面,,,,,,是棱上的點(diǎn),且滿足.(1)求證:直線平面;(2)求二面角的正弦值.20.(12分)已知橢圓,直線不過(guò)原點(diǎn)且不平行于坐標(biāo)軸,與有兩個(gè)交點(diǎn),,線段的中點(diǎn)為.(Ⅰ)證明:直線的斜率與的斜率的乘積為定值;(Ⅱ)若過(guò)點(diǎn),延長(zhǎng)線段與交于點(diǎn),四邊形能否為平行四邊形?若能,求此時(shí)的斜率,若不能,說(shuō)明理由.21.(12分)在①,②,③這三個(gè)條件中任選一個(gè),補(bǔ)充在下面問(wèn)題中,并解答.已知等差數(shù)列的公差為,等差數(shù)列的公差為.設(shè)分別是數(shù)列的前項(xiàng)和,且,,(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和.22.(10分)已知()過(guò)點(diǎn),且當(dāng)時(shí),函數(shù)取得最大值1.(1)將函數(shù)的圖象向右平移個(gè)單位得到函數(shù),求函數(shù)的表達(dá)式;(2)在(1)的條件下,函數(shù),求在上的值域.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
根據(jù)正負(fù)相關(guān)的概念判斷.【詳解】由散點(diǎn)圖知隨著的增大而減小,因此是負(fù)相關(guān).相關(guān)系數(shù)為負(fù).故選:C.【點(diǎn)睛】本題考查變量的相關(guān)關(guān)系,考查正相關(guān)和負(fù)相關(guān)的區(qū)別.掌握正負(fù)相關(guān)的定義是解題基礎(chǔ).2、D【解析】
根據(jù)函數(shù)定義域的求解方法可分別求得集合,由補(bǔ)集和交集定義可求得結(jié)果.【詳解】,,,.故選:.【點(diǎn)睛】本題考查集合運(yùn)算中的補(bǔ)集和交集運(yùn)算問(wèn)題,涉及到函數(shù)定義域的求解,屬于基礎(chǔ)題.3、A【解析】
根據(jù)題意可得,即知C在以AB為直徑的圓上.【詳解】,,,又,,平面,又平面,故在以為直徑的圓上,又是內(nèi)異于的動(dòng)點(diǎn),所以的軌跡是圓,但要去掉兩個(gè)點(diǎn)A,B故選:A【點(diǎn)睛】本題主要考查了線面垂直、線線垂直的判定,圓的性質(zhì),軌跡問(wèn)題,屬于中檔題.4、B【解析】
由題意可得的周期為,當(dāng)時(shí),,令,則的圖像和的圖像至少有個(gè)交點(diǎn),畫(huà)出圖像,數(shù)形結(jié)合,根據(jù),求得的取值范圍.【詳解】是定義域?yàn)镽的偶函數(shù),滿足任意,,令,又,為周期為的偶函數(shù),當(dāng)時(shí),,當(dāng),當(dāng),作出圖像,如下圖所示:函數(shù)至少有三個(gè)零點(diǎn),則的圖像和的圖像至少有個(gè)交點(diǎn),,若,的圖像和的圖像只有1個(gè)交點(diǎn),不合題意,所以,的圖像和的圖像至少有個(gè)交點(diǎn),則有,即,.故選:B.【點(diǎn)睛】本題考查函數(shù)周期性及其應(yīng)用,解題過(guò)程中用到了數(shù)形結(jié)合方法,這也是高考??嫉臒狳c(diǎn)問(wèn)題,屬于中檔題.5、B【解析】
選B.考點(diǎn):圓心坐標(biāo)6、A【解析】
根據(jù)雙曲線方程(),確定焦點(diǎn)位置,再根據(jù)漸近線方程得到求解.【詳解】因?yàn)殡p曲線(),所以,又因?yàn)闈u近線方程為,所以,所以.故選:A.【點(diǎn)睛】本題主要考查雙曲線的幾何性質(zhì),還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.7、A【解析】
根據(jù)分組求和法,利用等差數(shù)列的前項(xiàng)和公式求出前項(xiàng)的奇數(shù)項(xiàng)的和,利用等比數(shù)列的前項(xiàng)和公式求出前項(xiàng)的偶數(shù)項(xiàng)的和,進(jìn)而可求解.【詳解】當(dāng)為奇數(shù)時(shí),,則數(shù)列奇數(shù)項(xiàng)是以為首項(xiàng),以為公差的等差數(shù)列,當(dāng)為偶數(shù)時(shí),,則數(shù)列中每個(gè)偶數(shù)項(xiàng)加是以為首項(xiàng),以為公比的等比數(shù)列.所以.故選:A【點(diǎn)睛】本題考查了數(shù)列分組求和、等差數(shù)列的前項(xiàng)和公式、等比數(shù)列的前項(xiàng)和公式,需熟記公式,屬于基礎(chǔ)題.8、A【解析】
根據(jù)向量的線性運(yùn)算可得,利用及,計(jì)算即可.【詳解】因?yàn)?所以,所以,故選:A【點(diǎn)睛】本題主要考查了向量的線性運(yùn)算,向量數(shù)量積的運(yùn)算,向量數(shù)量積的性質(zhì),屬于中檔題.9、B【解析】
根據(jù)表格和折線統(tǒng)計(jì)圖逐一判斷即可.【詳解】A.中國(guó)代表團(tuán)的奧運(yùn)獎(jiǎng)牌總數(shù)不是一直保持上升趨勢(shì),29屆最多,錯(cuò)誤;B.折線統(tǒng)計(jì)圖中的六條線段只是為了便于觀察圖象所反映的變化,不表示某種意思,正確;C.30屆與第29屆北京奧運(yùn)會(huì)相比,奧運(yùn)金牌數(shù)、銅牌數(shù)有所下降,銀牌數(shù)有所上升,錯(cuò)誤;D.統(tǒng)計(jì)圖中前六屆奧運(yùn)會(huì)中國(guó)代表團(tuán)的奧運(yùn)獎(jiǎng)牌總數(shù)按照順序排列的中位數(shù)為,不正確;故選:B【點(diǎn)睛】此題考查統(tǒng)計(jì)圖,關(guān)鍵點(diǎn)讀懂折線圖,屬于簡(jiǎn)單題目.10、A【解析】
首先判斷函數(shù)的奇偶性,再根據(jù)特殊值即可利用排除法解得;【詳解】解:依題意,,故函數(shù)為偶函數(shù),圖象關(guān)于軸對(duì)稱,排除C;而,排除B;,排除D.故選:.【點(diǎn)睛】本題考查函數(shù)圖象的識(shí)別,函數(shù)的奇偶性的應(yīng)用,屬于基礎(chǔ)題.11、D【解析】
圓心坐標(biāo)為,代入直線方程,再由乘1法和基本不等式,展開(kāi)計(jì)算即可得到所求最小值.【詳解】圓的圓心為,由題意可得,即,,,則,當(dāng)且僅當(dāng)且即時(shí)取等號(hào),故選:.【點(diǎn)睛】本題考查最值的求法,注意運(yùn)用乘1法和基本不等式,注意滿足的條件:一正二定三等,同時(shí)考查直線與圓的關(guān)系,考查運(yùn)算能力,屬于基礎(chǔ)題.12、B【解析】
先解不等式化簡(jiǎn)兩個(gè)條件,利用集合法判斷充分必要條件即可【詳解】解不等式可得,解絕對(duì)值不等式可得,由于為的子集,據(jù)此可知“”是“”的必要不充分條件.故選:B【點(diǎn)睛】本題考查了必要不充分條件的判定,考查了學(xué)生數(shù)學(xué)運(yùn)算,邏輯推理能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由已知可得△AEF、△PEF均為直角三角形,且AF=2,由基本不等式可得當(dāng)AE=EF=2時(shí),△AEF的面積最大,然后由棱錐體積公式可求得體積最大值.【詳解】由PA⊥平面ABC,得PA⊥BC,又AB⊥BC,且PA∩AB=A,∴BC⊥平面PAB,則BC⊥AE,又PB⊥AE,則AE⊥平面PBC,于是AE⊥EF,且AE⊥PC,結(jié)合條件AF⊥PC,得PC⊥平面AEF,∴△AEF、△PEF均為直角三角形,由已知得AF=2,而S△AEF=(AE2+EF2)=AF2=2,當(dāng)且僅當(dāng)AE=EF=2時(shí),取“=”,此時(shí)△AEF的面積最大,三棱錐P﹣AEF的體積的最大值為:VP﹣AEF===.故答案為【點(diǎn)睛】本題主要考查直線與平面垂直的判定,基本不等式的應(yīng)用,同時(shí)考查了空間想象能力、計(jì)算能力和邏輯推理能力,屬于中檔題.14、【解析】
將f(x)寫(xiě)成分段函數(shù)形式,分析得f(x)為奇函數(shù)且在R上為增函數(shù),利用奇偶性和單調(diào)性解不等式即可得到答案.【詳解】根據(jù)題意,f(x)=x|x|=,則f(x)為奇函數(shù)且在R上為增函數(shù),則f(2x﹣1)+f(x)≥0?f(2x﹣1)≥﹣f(x)?f(2x﹣1)≥f(﹣x)?2x﹣1≥﹣x,解可得x≥,即x的取值范圍為[,+∞);故答案為:[,+∞).【點(diǎn)睛】本題考查分段函數(shù)的奇偶性與單調(diào)性的判定以及應(yīng)用,注意分析f(x)的奇偶性與單調(diào)性.15、【解析】
數(shù)列滿足知,數(shù)列以3為公比的等比數(shù)列,再由已知結(jié)合等比數(shù)列的性質(zhì)求得的值即可.【詳解】,數(shù)列是以3為公比的等比數(shù)列,又,,.故答案為:.【點(diǎn)睛】本題考查了等比數(shù)列定義,考查了對(duì)數(shù)的運(yùn)算性質(zhì),考查了等比數(shù)列的通項(xiàng)公式,是中檔題.16、【解析】
證明平面,于是,利用三棱錐的體積公式即可求解.【詳解】平面,平面,,又.平面,是的中點(diǎn),.
故答案為:【點(diǎn)睛】本題考查了線面垂直的判定定理、三棱錐的體積公式,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)見(jiàn)證明;(2)【解析】
(1)根據(jù)面面垂直的性質(zhì)得到平面,從而得到,利用勾股定理得到,利用線面垂直的判定定理證得平面;(2)設(shè),利用椎體的體積公式求得,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,從而求得時(shí),四面體的體積取得最大值,之后利用空間向量求得二面角的余弦值.【詳解】(1)證明:因?yàn)?,平面平面,平面平面,平面,所以平面,因?yàn)槠矫?,所?因?yàn)?,所以,所以,因?yàn)椋云矫?(2)解:設(shè),則,四面體的體積.,當(dāng)時(shí),,單調(diào)遞增;當(dāng)時(shí),,單調(diào)遞減.故當(dāng)時(shí),四面體的體積取得最大值.以為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系,則,,,,.設(shè)平面的法向量為,則,即,令,得,同理可得平面的一個(gè)法向量為,則.由圖可知,二面角為銳角,故二面角的余弦值為.【點(diǎn)睛】該題考查的是有關(guān)立體幾何的問(wèn)題,涉及到的知識(shí)點(diǎn)有面面垂直的性質(zhì),線面垂直的判定,椎體的體積,二面角的求法,在解題的過(guò)程中,注意巧用導(dǎo)數(shù)求解體積的最大值.18、(1)證明見(jiàn)解析;(2)證明見(jiàn)解析.【解析】
證明:(1)在矩形中,,又平面,平面,所以平面.(2)連結(jié),交于點(diǎn),連結(jié),在矩形中,點(diǎn)為的中點(diǎn),又,故,,又,平面,所以平面,又平面,所以平面平面.19、(1)證明見(jiàn)解析(2)【解析】
(1)連接,設(shè),連接.通過(guò)證明,證得直線平面.(2)建立空間直角坐標(biāo)系,利用平面和平面的法向量,計(jì)算出二面角的正弦值.【詳解】(1)連接,設(shè),連接,因?yàn)椋?,所以,在中,因?yàn)?,所以,且平面,故平?(2)因?yàn)?,,,,,所以,因?yàn)椋矫?,所以平面,所以,,取所在直線為軸,取所在直線為軸,取所在直線為軸,建立如圖所示的空間直角坐標(biāo)系,由已知可得,,,,所以,因?yàn)?,所以,所以點(diǎn)的坐標(biāo)為,所以,,設(shè)為平面的法向量,則,令,解得,,所以,即為平面的一個(gè)法向量.,同理可求得平面的一個(gè)法向量為所以所以二面角的正弦值為【點(diǎn)睛】本小題主要考查線面平行的證明,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.20、(Ⅰ)詳見(jiàn)解析;(Ⅱ)能,或.【解析】試題分析:(1)設(shè)直線,直線方程與橢圓方程聯(lián)立,根據(jù)韋達(dá)定理求根與系數(shù)的關(guān)系,并表示直線的斜率,再表示;(2)第一步由(Ⅰ)得的方程為.設(shè)點(diǎn)的橫坐標(biāo)為,直線與橢圓方程聯(lián)立求點(diǎn)的坐標(biāo),第二步再整理點(diǎn)的坐標(biāo),如果能構(gòu)成平行四邊形,只需,如果有值,并且滿足,的條件就說(shuō)明存在,否則不存在.試題解析:解:(1)設(shè)直線,,,.∴由得,∴,.∴直線的斜率,即.即直線的斜率與的斜率的乘積為定值.(2)四邊形能為平行四邊形.∵直線過(guò)點(diǎn),∴不過(guò)原點(diǎn)且與有兩個(gè)交點(diǎn)的充要條件是,由(Ⅰ)得的方程為.設(shè)點(diǎn)的橫坐標(biāo)為.∴由得,即將點(diǎn)的坐標(biāo)代入直線的方程得,因此.四邊形為平行四邊形當(dāng)且僅當(dāng)線段與線段互相平分,即∴.解得,.∵,,,∴當(dāng)?shù)男甭蕿榛驎r(shí),四邊形為平行四邊形.考點(diǎn):直線與橢圓的位置關(guān)系的綜合應(yīng)用【一題多解】第一問(wèn)涉及中點(diǎn)弦,當(dāng)直線與圓錐曲線相交時(shí),點(diǎn)是弦
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度排水設(shè)施保險(xiǎn)合同4篇
- 二零二五版飯店蔬菜肉類(lèi)產(chǎn)地直供合作合同2篇
- 二零二五年度全新科技項(xiàng)目居間合作費(fèi)合同模板下載2篇
- 二零二五年度內(nèi)蒙古肉牛產(chǎn)業(yè)鏈人才培養(yǎng)與引進(jìn)合同
- 2025年度汽車(chē)銷(xiāo)售促銷(xiāo)活動(dòng)執(zhí)行合同模板
- 二零二五年度學(xué)校室內(nèi)外體育設(shè)施一體化采購(gòu)合同范本3篇
- 2025年度民間借貸合同監(jiān)督與委托管理服務(wù)合同4篇
- 2025年度面粉加工企業(yè)二零二五年度綠色有機(jī)面粉采購(gòu)合同4篇
- 2025年度新能源汽車(chē)抵押擔(dān)保服務(wù)合同
- 二零二五年度公共綠地養(yǎng)護(hù)管理合同范本3篇
- 廣東省茂名市電白區(qū)2024-2025學(xué)年七年級(jí)上學(xué)期期末質(zhì)量監(jiān)測(cè)生物學(xué)試卷(含答案)
- 2024版?zhèn)€人私有房屋購(gòu)買(mǎi)合同
- 2024爆炸物運(yùn)輸安全保障協(xié)議版B版
- 2025年度軍人軍事秘密保護(hù)保密協(xié)議與信息安全風(fēng)險(xiǎn)評(píng)估合同3篇
- 《食品與食品》課件
- 讀書(shū)分享會(huì)《白夜行》
- 光伏工程施工組織設(shè)計(jì)
- DB4101-T 121-2024 類(lèi)家庭社會(huì)工作服務(wù)規(guī)范
- 化學(xué)纖維的鑒別與測(cè)試方法考核試卷
- 2024-2025學(xué)年全國(guó)中學(xué)生天文知識(shí)競(jìng)賽考試題庫(kù)(含答案)
- 自動(dòng)駕駛汽車(chē)道路交通安全性探討研究論文
評(píng)論
0/150
提交評(píng)論