![2022年甘肅省定西市成考專升本高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第1頁(yè)](http://file4.renrendoc.com/view/06b025c1555f40c7db7cf963a511b20c/06b025c1555f40c7db7cf963a511b20c1.gif)
![2022年甘肅省定西市成考專升本高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第2頁(yè)](http://file4.renrendoc.com/view/06b025c1555f40c7db7cf963a511b20c/06b025c1555f40c7db7cf963a511b20c2.gif)
![2022年甘肅省定西市成考專升本高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第3頁(yè)](http://file4.renrendoc.com/view/06b025c1555f40c7db7cf963a511b20c/06b025c1555f40c7db7cf963a511b20c3.gif)
![2022年甘肅省定西市成考專升本高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第4頁(yè)](http://file4.renrendoc.com/view/06b025c1555f40c7db7cf963a511b20c/06b025c1555f40c7db7cf963a511b20c4.gif)
![2022年甘肅省定西市成考專升本高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第5頁(yè)](http://file4.renrendoc.com/view/06b025c1555f40c7db7cf963a511b20c/06b025c1555f40c7db7cf963a511b20c5.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022年甘肅省定西市成考專升本高等數(shù)學(xué)一自考測(cè)試卷(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(50題)1.
2.
3.
4.滑輪半徑r=0.2m,可繞水平軸O轉(zhuǎn)動(dòng),輪緣上纏有不可伸長(zhǎng)的細(xì)繩,繩的一端掛有物體A,如圖所示。已知滑輪繞軸0的轉(zhuǎn)動(dòng)規(guī)律φ=0.15t3rad,其中t單位為s,當(dāng)t=2s時(shí),輪緣上M點(diǎn)的速度、加速度和物體A的速度、加速度計(jì)算不正確的是()。
A.M點(diǎn)的速度為vM=0.36m/s
B.M點(diǎn)的加速度為aM=0.648m/s2
C.物體A的速度為vA=0.36m/s
D.物體A的加速度為aA=0.36m/s2
5.下列關(guān)系正確的是()。A.
B.
C.
D.
6.設(shè)lnx是f(x)的一個(gè)原函數(shù),則f'(x)=()。A.
B.
C.
D.
7.方程x2+y2-z=0表示的二次曲面是
A.橢圓面B.圓錐面C.旋轉(zhuǎn)拋物面D.柱面
8.
9.設(shè)f(x)為連續(xù)函數(shù),則下列關(guān)系式中正確的是()A.A.
B.
C.
D.
10.
11.當(dāng)x→0時(shí),2x+x2與x2比較是A.A.高階無窮小B.低階無窮小C.同階但不等價(jià)無窮小D.等價(jià)無窮小
12.
13.
A.2x+1B.2xy+1C.x2+1D.2xy14.A.A.
B.
C.
D.
15.設(shè)函數(shù)f(x)在(0,1)內(nèi)可導(dǎo),f'(x)>0,則f(x)在(0,1)內(nèi)()A.A.單調(diào)減少B.單調(diào)增加C.為常量D.不為常量,也不單調(diào)
16.
17.剛體上A、B、C、D四點(diǎn)組成一個(gè)平行四邊形,如在其四個(gè)頂點(diǎn)作用四個(gè)力,此四個(gè)邊恰好組成封閉的力多邊形。則()
A.力系平衡
B.力系有合力
C.力系的合力偶矩等于平行四邊形ABCD的面積
D.力系的合力偶矩等于負(fù)的平行四邊形ABCD的面積的2倍
18.
19.
20.設(shè)有直線
當(dāng)直線l1與l2平行時(shí),λ等于().A.A.1
B.0
C.
D.一1
21.
22.
A.必定存在且值為0B.必定存在且值可能為0C.必定存在且值一定不為0D.可能不存在23.若f(x)<0,(a<z≤b)且f(b)<0,則在(a,b)內(nèi)()。A.f(x)>0B.f(x)<0C.f(x)=0D.f(x)符號(hào)不定
24.
25.下列反常積分收斂的是()。A.∫1+∞xdx
B.∫1+∞x2dx
C.
D.
26.()A.A.(-∞,-3)和(3,+∞)
B.(-3,3)
C.(-∞,O)和(0,+∞)
D.(-3,0)和(0,3)
27.A.A.
B.
C.
D.
28.
29.半圓板的半徑為r,重為w,如圖所示。已知板的重心C離圓心的距離為在A、B、D三點(diǎn)用三根鉛垂繩懸掛于天花板上,使板處于水平位置,則三根繩子的拉力為()。
A.F1=0.38w
B.F2=0.23w
C.F3=0.59w
D.以上計(jì)算均正確
30.函數(shù)y=ex+arctanx在區(qū)間[-1,1]上
A.單調(diào)減少B.單調(diào)增加C.無最大值D.無最小值
31.
32.若f(x)為[a,b]上的連續(xù)函數(shù),()。A.小于0B.大于0C.等于0D.不確定
33.
A.x=-2B.x=2C.y=1D.y=-2
34.
35.
36.
37.
38.設(shè)y=5x,則y'等于().
A.A.
B.
C.
D.
39.
40.A.A.條件收斂B.絕對(duì)收斂C.收斂性與k有關(guān)D.發(fā)散41.設(shè)二元函數(shù)z=xy,則點(diǎn)P0(0,0)A.為z的駐點(diǎn),但不為極值點(diǎn)B.為z的駐點(diǎn),且為極大值點(diǎn)C.為z的駐點(diǎn),且為極小值點(diǎn)D.不為z的駐點(diǎn),也不為極值點(diǎn)42.微分方程y+y=0的通解為().A.A.
B.
C.
D.
43.設(shè)函數(shù)f(x)=arcsinx,則f'(x)等于().
A.-sinx
B.cosx
C.
D.
44.
45.方程z=x2+y2表示的曲面是()
A.橢球面B.旋轉(zhuǎn)拋物面C.球面D.圓錐面46.若x0為f(x)的極值點(diǎn),則().A.A.f(x0)必定存在,且f(x0)=0
B.f(x0)必定存在,但f(x0)不-定等于零
C.f(x0)不存在或f(x0)=0
D.f(x0)必定不存在
47.
48.A.(2+X)^2B.3(2+X)^2C.(2+X)^4D.3(2+X)^449.設(shè)y=e-5x,則dy=()A.-5e-5xdxB.-e-5xdxC.e-5xdxD.5e-5xdx
50.
二、填空題(20題)51.
52.冪級(jí)數(shù)
的收斂半徑為________。
53.
54.函數(shù)的間斷點(diǎn)為______.55.設(shè)y=ln(x+2),貝y"=________。
56.
57.微分方程xy'=1的通解是_________。
58.
59.________.
60.
61.
62.
63.64.65.
66.設(shè)y=f(x)在點(diǎn)x=0處可導(dǎo),且x=0為f(x)的極值點(diǎn),則f(0)=__________
67.設(shè),則y'=______.68.過原點(diǎn)(0,0,0)且垂直于向量(1,1,1)的平面方程為________。
69.
70.
三、計(jì)算題(20題)71.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
72.證明:73.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
74.求微分方程y"-4y'+4y=e-2x的通解.
75.將f(x)=e-2X展開為x的冪級(jí)數(shù).76.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.77.78.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).79.求曲線在點(diǎn)(1,3)處的切線方程.80.求微分方程的通解.81.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則
82.
83.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.
84.
85.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.86.87.
88.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.89.
90.四、解答題(10題)91.將函數(shù)f(x)=lnx展開成(x-1)的冪級(jí)數(shù),并指出收斂區(qū)間。
92.
93.94.求由曲線y=2x-x2,y=x所圍成的平面圖形的面積S.并求此平面圖形繞x軸旋轉(zhuǎn)一周所得旋轉(zhuǎn)體的體積Vx.
95.
96.
97.計(jì)算,其中D為曲線y=x,y=1,x=0圍成的平面區(qū)域.98.
99.
100.五、高等數(shù)學(xué)(0題)101.
=________。
六、解答題(0題)102.
參考答案
1.D
2.B
3.D
4.B
5.B由不定積分的性質(zhì)可知,故選B.
6.C
7.C
8.D
9.B本題考查的知識(shí)點(diǎn)為:若f(x)可積分,則定積分的值為常數(shù);可變上限積分求導(dǎo)公式的運(yùn)用.
注意到A左端為定積分,定積分存在時(shí),其值一定為常數(shù),常量的導(dǎo)數(shù)等于零.因此A不正確.
由可變上限積分求導(dǎo)公式可知B正確.C、D都不正確.
10.D
11.B
12.B
13.B
14.D
15.B由于f'(x)>0,可知f(x)在(0,1)內(nèi)單調(diào)增加.因此選B.
16.C解析:
17.D
18.A解析:
19.D
20.C本題考查的知識(shí)點(diǎn)為直線間的關(guān)系.
21.D解析:
22.B
23.D∵f"(x)<0,(a<x≤b).∴(x)單調(diào)減少(a<x≤b)當(dāng)f(b)<0時(shí),f(x)可能大于0也可能小于0。
24.A
25.DA,∫1+∞xdx==∞發(fā)散;
26.D
27.A本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的計(jì)算.
可知應(yīng)選A.
28.A
29.A
30.B本題考查了函數(shù)的單調(diào)性的知識(shí)點(diǎn),
因y'=ex+1/(1+x2)>0處處成立,于是函數(shù)在(-∞,+∞)內(nèi)都是單調(diào)增加的,故在[-1,1]上單調(diào)增加。
31.A解析:
32.C
33.C解析:
34.B
35.C解析:
36.D
37.B
38.C本題考查的知識(shí)點(diǎn)為基本初等函數(shù)的求導(dǎo).
y=5x,y'=5xln5,因此應(yīng)選C.
39.C
40.A本題考杏的知識(shí)點(diǎn)為級(jí)數(shù)的絕對(duì)收斂與條件收斂.
41.A
42.D本題考查的知識(shí)點(diǎn)為-階微分方程的求解.
可以將方程認(rèn)作可分離變量方程;也可以將方程認(rèn)作-階線性微分方程;還可以仿二階線性常系數(shù)齊次微分方程,并作為特例求解.
解法1將方程認(rèn)作可分離變量方程.
解法2將方程認(rèn)作-階線性微分方程.由通解公式可得
解法3認(rèn)作二階常系數(shù)線性齊次微分方程特例求解:
特征方程為r+1=0,
特征根為r=-1,
43.C解析:本題考查的知識(shí)點(diǎn)為基本導(dǎo)數(shù)公式.
可知應(yīng)選C.
44.B解析:
45.B旋轉(zhuǎn)拋物面的方程為z=x2+y2.
46.C本題考查的知識(shí)點(diǎn)為函數(shù)極值點(diǎn)的性質(zhì).
若x0為函數(shù)y=f(x)的極值點(diǎn),則可能出現(xiàn)兩種情形:
(1)f(x)在點(diǎn)x0處不可導(dǎo),如y=|x|,在點(diǎn)x0=0處f(x)不可導(dǎo),但是點(diǎn)x0=0為f(x)=|x|的極值點(diǎn).
(2)f(x)在點(diǎn)x0可導(dǎo),則由極值的必要條件可知,必定有f(x0)=0.
從題目的選項(xiàng)可知應(yīng)選C.
本題常見的錯(cuò)誤是選A.其原因是考生將極值的必要條件:“若f(x)在點(diǎn)x0可導(dǎo),且x0為f(x)的極值點(diǎn),則必有f(x0)=0”認(rèn)為是極值的充分必要條件.
47.B
48.B
49.A
50.A解析:
51.
52.所給冪級(jí)數(shù)為不缺項(xiàng)情形,可知ρ=1,因此收斂半徑R==1。
53.
本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的四則運(yùn)算.54.本題考查的知識(shí)點(diǎn)為判定函數(shù)的間斷點(diǎn).
僅當(dāng),即x=±1時(shí),函數(shù)沒有定義,因此x=±1為函數(shù)的間斷點(diǎn)。
55.
56.57.y=lnx+C
58.(12)
59.
60.11解析:
61.
本題考查的知識(shí)點(diǎn)為二元函數(shù)的偏導(dǎo)數(shù)計(jì)算.
62.
63.64.(2x+cosx)dx.
本題考查的知識(shí)點(diǎn)為微分運(yùn)算.
65.
本題考查的知識(shí)點(diǎn)為二重積分的性質(zhì).
66.67.解析:本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的四則運(yùn)算.
68.x+y+z=0
69.0
70.f(x)+Cf(x)+C解析:
71.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
72.
73.
74.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
75.
76.
77.
78.
列表:
說明
79.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
80.81.由等價(jià)無窮小量的定義可知
82.83.函數(shù)的定義域?yàn)?/p>
注意
84.
85.由二重積分物理意義知
86.
87.由一階線
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 醫(yī)藥冷鏈運(yùn)輸服務(wù)合同
- 建筑工程人才中介合同
- 花店翻新墊資合同
- 行業(yè)專項(xiàng)作業(yè)指南 財(cái)務(wù)管理基礎(chǔ)
- 經(jīng)營(yíng)用房租租賃合同書
- 印刷合同協(xié)議書
- 門衛(wèi)臨時(shí)聘用合同
- 軟件開發(fā)流程優(yōu)化與項(xiàng)目管理體系建立指南
- 員工離職后保密協(xié)議
- 購(gòu)房協(xié)議和購(gòu)房合同
- 2024年中考語文試題分類匯編:散文、小說閱讀(第03期)含答案及解析
- 《宮頸癌篩查》課件
- 2024年中儲(chǔ)糧油脂有限公司招聘筆試真題
- 消化科護(hù)理疑難病例討論
- 杭氧股份深度報(bào)告:工業(yè)氣體龍頭期待2025景氣復(fù)蘇
- 2024年學(xué)校意識(shí)形態(tài)工作總結(jié)
- 2024年聯(lián)勤保障部隊(duì)第九四〇醫(yī)院社會(huì)招聘考試真題
- 慢性腎臟病健康知識(shí)科普
- 第二章《有理數(shù)的運(yùn)算》單元備課教學(xué)實(shí)錄2024-2025學(xué)年人教版數(shù)學(xué)七年級(jí)上冊(cè)
- DB31-T 596-2021 城市軌道交通合理通風(fēng)技術(shù)管理要求
- 華為智慧園區(qū)解決方案介紹
評(píng)論
0/150
提交評(píng)論