版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022年黑龍江省牡丹江市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(20題)1.設(shè)函數(shù)f(x)=sinx,則不定積分∫f'(x)dx=A.A.sinx+CB.cosx+CC.-sinx+CD.-cosx+C
2.已知y=ksin2x的一個(gè)原函數(shù)為y=cos2x,則k等于()。A.2B.1C.-1D.-2
3.微分方程yy'=1的通解為A.A.y=x2+C
B.y2=x+C
C.1/2y2=Cx
D.1/2y2=x+C
4.
5.
6.二次積分等于()A.A.
B.
C.
D.
7.
8.
9.設(shè)y=2-cosx,則y'=
A.1-sinxB.1+sinxC.-sinxD.sinx
10.
11.
12.下列關(guān)系正確的是()。A.
B.
C.
D.
13.當(dāng)x→0時(shí),3x是x的().
A.高階無(wú)窮小量B.等價(jià)無(wú)窮小量C.同階無(wú)窮小量,但不是等價(jià)無(wú)窮小量D.低階無(wú)窮小量
14.
15.
16.∫cos3xdx=A.A.3sin3x+CB.-3sin3x+CC.(1/3)sin3x+CD.-(1/3)sin3x+C17.f(x)在[a,b]上連續(xù)是f(x)在[a,b]上有界的()條件。A.充分B.必要C.充要D.非充分也非必要
18.
19.設(shè)y=sin(x-2),則dy=()A.A.-cosxdx
B.cosxdX
C.-cos(x-2)dx
D.cos(x-2)dx
20.
二、填空題(20題)21.
22.交換二重積分次序∫01dx∫x2xf(x,y)dy=________。
23.
24.
25.
26.
27.設(shè)f(x)在x=1處連續(xù),
28.
29.已知f(0)=1,f(1)=2,f(1)=3,則∫01xf"(x)dx=________。
30.函數(shù)f(x)=2x2+4x+2的極小值點(diǎn)為x=_________。
31.32.
=_________.33.
34.
35.36.
37.
38.
39.
40.
三、計(jì)算題(20題)41.
42.求微分方程y"-4y'+4y=e-2x的通解.
43.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.44.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
45.46.將f(x)=e-2X展開為x的冪級(jí)數(shù).47.求微分方程的通解.48.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則49.50.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.51.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.
52.
53.
54.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
55.
56.求曲線在點(diǎn)(1,3)處的切線方程.57.58.證明:59.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).60.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.四、解答題(10題)61.
62.
63.
64.
65.66.求直線y=2x+1與直線x=0,x=1和y=0所圍平面圖形的面積,并求該圖形繞x軸旋轉(zhuǎn)一周所得旋轉(zhuǎn)體的體積。
67.
68.(本題滿分8分)69.
70.已知曲線C的方程為y=3x2,直線ι的方程為y=6x。求由曲線C與直線ι圍成的平面圖形的面積S。
五、高等數(shù)學(xué)(0題)71.
=()。
A.0B.1C.2D.4六、解答題(0題)72.
參考答案
1.A由不定積分性質(zhì)∫f'(x)dx=f(x)+C,可知選A。
2.D本題考查的知識(shí)點(diǎn)為可變限積分求導(dǎo)。由原函數(shù)的定義可知(cos2x)'=ksin2x,而(cos2x)'=(-sin2x)·2,可知k=-2。
3.D
4.C
5.C解析:
6.A本題考查的知識(shí)點(diǎn)為交換二次積分的積分次序.
由所給二次積分限可知積分區(qū)域D的不等式表達(dá)式為:
0≤x≤1,0≤y≤1-x,
其圖形如圖1-1所示.
交換積分次序,D可以表示為
0≤y≤1,0≤x≤1-y,
因此
可知應(yīng)選A.
7.A
8.A
9.D解析:y=2-cosx,則y'=2'-(cosx)'=sinx。因此選D。
10.D解析:
11.D
12.C本題考查的知識(shí)點(diǎn)為不定積分的性質(zhì)。
13.C本題考查的知識(shí)點(diǎn)為無(wú)窮小量階的比較.
應(yīng)依定義考察
由此可知,當(dāng)x→0時(shí),3x是x的同階無(wú)窮小量,但不是等價(jià)無(wú)窮小量,故知應(yīng)選C.
本題應(yīng)明確的是:考察當(dāng)x→x0時(shí)無(wú)窮小量β與無(wú)窮小量α的階的關(guān)系時(shí),要判定極限
這里是以α為“基本量”,考生要特別注意此點(diǎn),才能避免錯(cuò)誤.
14.B
15.B解析:
16.C
17.A定理:閉區(qū)間上的連續(xù)函數(shù)必有界;反之不一定。
18.B
19.D本題考查的知識(shí)點(diǎn)為微分運(yùn)算.
可知應(yīng)選D.
20.D
21.(-∞.2)22.因?yàn)椤?1dx∫x2xf(x,y)dy,所以其區(qū)域如圖所示,所以先對(duì)x的積分為。
23.24.e-1/2
25.1
26.11解析:27.2本題考查的知識(shí)點(diǎn)為:連續(xù)性與極限的關(guān)系;左極限、右極限與極限的關(guān)系.
由于f(x)在x=1處連續(xù),可知必定存在,由于,可知=
28.
29.2由題設(shè)有∫01xf"(x)dx=∫01xf"(x)=xf"(x)|01-|01f"(x)dx=f"(1)-f(x)|01=f"(1)-f(1)+f(0)=3-2+1=2。
30.-1
31.
本題考查的知識(shí)點(diǎn)為直線的方程和直線與直線的關(guān)系.
由于兩條直線平行的充分必要條件為它們的方向向量平行,因此可取所求直線的方向向量為(2,1,-1).由直線的點(diǎn)向式方程可知所求直線方程為
32.。
33.
34.1/e1/e解析:
35.
36.2本題考查的知識(shí)點(diǎn)為極限的運(yùn)算.
37.ee解析:38.2.
本題考查的知識(shí)點(diǎn)為二階導(dǎo)數(shù)的運(yùn)算.
39.
40.
解析:
41.
則
42.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
43.函數(shù)的定義域?yàn)?/p>
注意
44.
45.
46.
47.48.由等價(jià)無(wú)窮小量的定義可知
49.
50.
51.由二重積分物理意義知
52.53.由一階線性微分方程通解公式有
54.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
55.
56.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度消防設(shè)施設(shè)備檢測(cè)與施工合同3篇
- 子母擠出機(jī)安全操作規(guī)程
- 2025年魯教版三年級(jí)語(yǔ)文上冊(cè)階段測(cè)試試卷
- 2024版智慧路燈照明系統(tǒng)合作協(xié)議
- 2024年私人借貸協(xié)議模板版B版
- 污水收集水箱施工方案
- 二零二五年度桉樹種植與生態(tài)旅游開發(fā)一體化合同3篇
- 導(dǎo)軌式到光電隔離中繼器安全操作規(guī)程
- 2025年浙教版八年級(jí)化學(xué)上冊(cè)月考試卷含答案
- 雙滾筒搖擺制粒機(jī)安全操作規(guī)程
- 北京市海淀區(qū)2024-2025學(xué)年高一上學(xué)期期末考試歷史試題(含答案)
- 常用口服藥品的正確使用方法
- 《心肺復(fù)蘇機(jī)救治院內(nèi)心搏驟?;颊咦o(hù)理專家共識(shí)》解讀
- 2024年危險(xiǎn)化學(xué)品生產(chǎn)經(jīng)營(yíng)單位其他從業(yè)人員考試題庫(kù)附答案
- 中華傳統(tǒng)文化之文學(xué)瑰寶學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 2023年外交學(xué)院招聘筆試備考試題及答案解析
- MA5680T開局配置
- 焊接工藝評(píng)定表格(共11頁(yè))
- (完整word版)澳大利亞簽證54表(家庭構(gòu)成)
- CFG樁施工記錄表范本
- 二、菲涅耳公式表示反射波、折射波與入射波的振幅和位相關(guān)
評(píng)論
0/150
提交評(píng)論