版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年四川省樂(lè)山市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(50題)1.設(shè)f(x)為區(qū)間[a,b]上的連續(xù)函數(shù),則曲線y=f(x)與直線x=a,x=b,y=0所圍成的封閉圖形的面積為()。A.
B.
C..
D.不能確定
2.設(shè)函數(shù)f(x)在[0,b]連續(xù),在(a,b)可導(dǎo),f′(x)>0.若f(a)·f(b)<0,則y=f(x)在(a,b)().
A.不存在零點(diǎn)
B.存在唯一零點(diǎn)
C.存在極大值點(diǎn)
D.存在極小值點(diǎn)
3.
4.
5.()。A.-2B.-1C.0D.2
6.設(shè)y=cosx,則y''=()A.sinxB.cosxC.-cosxD.-sinx
7.設(shè)函數(shù)z=sin(xy2),則等于()。A.cos(xy2)
B.xy2cos(xy2)
C.2xyeos(xy2)
D.y2cos(xy2)
8.函數(shù)y=ln(1+x2)的單調(diào)增加區(qū)間是()。A.(-5,5)B.(-∞,0)C.(0,+∞)D.(-∞,+∞)
9.A.A.1B.2C.1/2D.-1
10.
11.
A.-e
B.-e-1
C.e-1
D.e
12.A.A.1
B.1/m2
C.m
D.m2
13.對(duì)于微分方程y"-2y'+y=xex,利用待定系數(shù)法求其特解y*時(shí),下列特解設(shè)法正確的是()。A.y*=(Ax+B)ex
B.y*=x(Ax+B)ex
C.y*=Ax3ex
D.y*=x2(Ax+B)ex
14.
15.A.2x
B.3+2x
C.3
D.x2
16.當(dāng)x一0時(shí),與3x2+2x3等價(jià)的無(wú)窮小量是().
A.2x3
B.3x2
C.x2
D.x3
17.
18.A.3B.2C.1D.0
19.A.A.
B.
C.
D.
20.設(shè)函數(shù)f(x)與g(x)均在(α,b)可導(dǎo),且滿足f'(x)<g'(x),則f(x)與g(x)的關(guān)系是
A.必有f(x)>g(x)B.必有f(x)<g(x)C.必有f(x)=g(x)D.不能確定大小
21.
22.設(shè)f(x)在點(diǎn)x0處連續(xù),則下列命題中正確的是().A.A.f(x)在點(diǎn)x0必定可導(dǎo)
B.f(x)在點(diǎn)x0必定不可導(dǎo)
C.
D.
23.設(shè)函數(shù)在x=0處連續(xù),則等于()。A.2B.1/2C.1D.-2
24.下列反常積分收斂的是()。A.∫1+∞xdx
B.∫1+∞x2dx
C.
D.
25.
26.∫sin5xdx等于().
A.A.
B.
C.
D.
27.微分方程y'+y=0的通解為y=A.e-x+C
B.-e-x+C
C.Ce-x
D.Cex
28.
29.方程x2+y2-z=0表示的二次曲面是()。A.橢球面B.圓錐面C.旋轉(zhuǎn)拋物面D.柱面
30.
31.下面選項(xiàng)中,不屬于牛頓動(dòng)力學(xué)基礎(chǔ)中的定律的是()。
A.慣性定律:無(wú)外力作用時(shí),質(zhì)點(diǎn)將保持原來(lái)的運(yùn)動(dòng)狀態(tài)(靜止或勻速直線運(yùn)動(dòng)狀態(tài))
B.運(yùn)動(dòng)定律:質(zhì)點(diǎn)因受外力作用而產(chǎn)生的加速度,其方向與力的方向相同,大小與力的大小成正比
C.作用與反作用定律:兩個(gè)物體問(wèn)的作用力,總是大小相等,方向相反,作用線重合,并分別作用在這兩個(gè)物體上
D.剛化定律:變形體在某一力系作用下,處于平衡狀態(tài)時(shí),若假想將其剛化為剛體,則其平衡狀態(tài)保持不變
32.
33.
34.A.3x2+C
B.
C.x3+C
D.
35.若∫f(x)dx=F(x)+C,則∫f(2x)dx等于().A.A.2F(2x)+CB.F(2x)+CC.F(x)+CD.F(2x)/2+C36.A.A.
B.
C.
D.
37.A.
B.
C.
D.
38.設(shè)x是f(x)的一個(gè)原函數(shù),則f(x)=A.A.x2/2B.2x2
C.1D.C(任意常數(shù))
39.滑輪半徑r=0.2m,可繞水平軸O轉(zhuǎn)動(dòng),輪緣上纏有不可伸長(zhǎng)的細(xì)繩,繩的一端掛有物體A,如圖所示。已知滑輪繞軸0的轉(zhuǎn)動(dòng)規(guī)律φ=0.15t3rad,其中t單位為s,當(dāng)t=2s時(shí),輪緣上M點(diǎn)的速度、加速度和物體A的速度、加速度計(jì)算不正確的是()。
A.M點(diǎn)的速度為vM=0.36m/s
B.M點(diǎn)的加速度為aM=0.648m/s2
C.物體A的速度為vA=0.36m/s
D.物體A的加速度為aA=0.36m/s2
40.設(shè)函數(shù)f(x)=2sinx,則f'(x)等于().A.A.2sinxB.2cosxC.-2sinxD.-2cosx.
41.設(shè)y=2-cosx,則y'=
A.1-sinxB.1+sinxC.-sinxD.sinx
42.
43.設(shè)f'(x)=1+x,則f(x)等于().A.A.1
B.X+X2+C
C.x++C
D.2x+x2+C
44.設(shè)lnx是f(x)的一個(gè)原函數(shù),則f'(x)=A.-1/x
B.1/x
C.-1/x2
D.1/x2
45.
46.
47.
48.
49.
50.
二、填空題(20題)51.
52.53.
54.
55.56.
57.函數(shù)在x=0連續(xù),此時(shí)a=______.
58.
59.設(shè)當(dāng)x≠0時(shí),在點(diǎn)x=0處連續(xù),當(dāng)x≠0時(shí),F(xiàn)(x)=-f(x),則F(0)=______.
60.
61.62.63.
64.
65.
66.
67.
68.
69.設(shè)sinx為f(x)的原函數(shù),則f(x)=________。
70.
三、計(jì)算題(20題)71.求微分方程的通解.72.證明:
73.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
74.求曲線在點(diǎn)(1,3)處的切線方程.75.76.
77.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則78.79.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.80.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
81.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).82.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.83.
84.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.85.86.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).87.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.
88.求微分方程y"-4y'+4y=e-2x的通解.
89.
90.
四、解答題(10題)91.(本題滿分8分)計(jì)算92.(本題滿分10分)求由曲線y=x,y=lnx及y=0,y=1圍成的平面圖形的面積S及此平面圖形繞y軸旋轉(zhuǎn)一周所得旋轉(zhuǎn)體體積.
93.
94.計(jì)算,其中D是由x2+y2=1,y=x及x軸所圍成的第一象域的封閉圖形.
95.
96.
97.求二元函數(shù)z=x2-xy+y2+x+y的極值。
98.
99.
100.
五、高等數(shù)學(xué)(0題)101.已知函數(shù)f(x)在點(diǎn)x0處可導(dǎo),則
=()。
A.一2f"(x0)
B.2f"(一x0)
C.2f"(x0)
D.不存在
六、解答題(0題)102.
參考答案
1.B本題考查的知識(shí)點(diǎn)為定積分的幾何意義。由定積分的幾何意義可知應(yīng)選B。常見(jiàn)的錯(cuò)誤是選C。如果畫個(gè)草圖,則可以避免這類錯(cuò)誤。
2.B由于f(x)在[a,b]上連續(xù)f(z)·fb)<0,由閉區(qū)間上連續(xù)函數(shù)的零點(diǎn)定理可知,y=f(x)在(a,b)內(nèi)至少存在一個(gè)零點(diǎn).又由于f(x)>0,可知f(x)在(a,b)內(nèi)單調(diào)增加,因此f(x)在(a,b)內(nèi)如果有零點(diǎn),則至多存在一個(gè).
綜合上述f(x)在(a,b)內(nèi)存在唯一零點(diǎn),故選B.
3.D
4.C
5.A
6.Cy=cosx,y'=-sinx,y''=-cosx.
7.D本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的運(yùn)算。由z=sin(xy2),知可知應(yīng)選D。
8.C本題考查的知識(shí)點(diǎn)為判定函數(shù)的單調(diào)性。
y=ln(1+x2)的定義域?yàn)?-∞,+∞)。
當(dāng)x>0時(shí),y'>0,y為單調(diào)增加函數(shù),
當(dāng)x<0時(shí),y'<0,y為單調(diào)減少函數(shù)。
可知函數(shù)y=ln(1+x2)的單調(diào)增加區(qū)間是(0,+∞),故應(yīng)選C。
9.C
10.C
11.C所給問(wèn)題為反常積分問(wèn)題,由定義可知
因此選C.
12.D本題考查的知識(shí)點(diǎn)為重要極限公式或等價(jià)無(wú)窮小代換.
解法1由可知
解法2當(dāng)x→0時(shí),sinx~x,sinmx~mx,因此
13.D特征方程為r2-2r+1=0,特征根為r=1(二重根),f(x)=xex,α=1為特征根,因此原方程特解y*=x2(Ax+B)ex,因此選D。
14.C
15.A由導(dǎo)數(shù)的基本公式及四則運(yùn)算法則,有故選A.
16.B由于當(dāng)x一0時(shí),3x2為x的二階無(wú)窮小量,2x3為戈的三階無(wú)窮小量.因此,3x2+2x3為x的二階無(wú)窮小量.又由,可知應(yīng)選B.
17.C
18.A
19.D
20.D解析:由f'(x)<g'(x)知,在(α,b)內(nèi),g(x)的變化率大于f(x)的變化率,由于沒(méi)有g(shù)(α)與f(α)的已知條件,無(wú)法判明f(x)與g(x)的關(guān)系。
21.D
22.C本題考查的知識(shí)點(diǎn)為極限、連續(xù)與可導(dǎo)性的關(guān)系.
這些性質(zhì)考生應(yīng)該熟記.由這些性質(zhì)可知本例應(yīng)該選C.
23.C本題考查的知識(shí)點(diǎn)為函數(shù)連續(xù)性的概念。由于f(x)在點(diǎn)x=0連續(xù),因此,故a=1,應(yīng)選C。
24.DA,∫1+∞xdx==∞發(fā)散;
25.D
26.A本題考查的知識(shí)點(diǎn)為不定積分的換元積分法.
,可知應(yīng)選D.
27.C
28.D
29.C本題考查的知識(shí)點(diǎn)為二次曲面的方程。
將x2+y2-z=0與二次曲面標(biāo)準(zhǔn)方程對(duì)照,可知其為旋轉(zhuǎn)拋面,故應(yīng)選C。
30.B
31.D
32.C解析:
33.D
34.B
35.D本題考查的知識(shí)點(diǎn)為不定積分的第一換元積分法(湊微分法).
由題設(shè)知∫f(x)dx=F(x)+C,因此
可知應(yīng)選D.
36.B本題考查的知識(shí)點(diǎn)為定積分運(yùn)算.
因此選B.
37.A本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的計(jì)算。由于故知應(yīng)選A。
38.Cx為f(x)的一個(gè)原函數(shù),由原函數(shù)定義可知f(x)=x'=1,故選C。
39.B
40.B本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的運(yùn)算.
f(x)=2sinx,
f'(x)=2(sinx)'=2cosx,
可知應(yīng)選B.
41.D解析:y=2-cosx,則y'=2'-(cosx)'=sinx。因此選D。
42.D解析:
43.C本題考查的知識(shí)點(diǎn)為不定積分的性質(zhì).
可知應(yīng)選C.
44.C
45.B
46.B
47.C
48.C
49.C
50.D
51.2
52.53.由可變上限積分求導(dǎo)公式可知
54.
55.56.本題考查的知識(shí)點(diǎn)為重要極限公式。
57.0
58.12x12x解析:59.1本題考查的知識(shí)點(diǎn)為函數(shù)連續(xù)性的概念.
由連續(xù)性的定義可知,若F(x)在點(diǎn)x=0連續(xù),則必有,由題設(shè)可知
60.ln|1-cosx|+Cln|1-cosx|+C解析:
61.e-2
62.
63.
64.y=x3+1
65.
解析:
66.x
67.
68.2cos(x2+y2)(xdx+ydy)2cos(x2+y2)(xdx+ydy)解析:
69.0因?yàn)閟inx為f(x)的一個(gè)原函數(shù),所以f(x)=(sinx)"=cosx,f"(x)=-sinx。
70.
71.
72.
73.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%74.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
75.
76.由一階線性微分方程通解公式有
77.由等價(jià)無(wú)窮小量的定義可知
78.
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度三人合伙開(kāi)展物流倉(cāng)儲(chǔ)服務(wù)合同
- 2024年店鋪分割財(cái)產(chǎn)分配協(xié)議
- 2024年廢窯廠坑塘土地租賃協(xié)議
- 2024年度0架AC3A直升機(jī)購(gòu)銷協(xié)議
- 2024年度煤炭買賣合同(長(zhǎng)協(xié))
- 2024水電安裝勞務(wù)分包合同范本
- 2024年度云計(jì)算服務(wù)與技術(shù)研發(fā)合同
- 2024年度新能源汽車銷售與服務(wù)分包合同
- 2024購(gòu)買車輛合同范本
- 2024年度智能家居解決方案合同
- 2024至2030年中國(guó)巖土工程市場(chǎng)深度分析及發(fā)展趨勢(shì)研究報(bào)告
- 新版高血壓病人的護(hù)理培訓(xùn)課件
- 醫(yī)院等級(jí)創(chuàng)建工作匯報(bào)
- 2024年江西省公務(wù)員錄用考試《行測(cè)》題(網(wǎng)友回憶版)(題目及答案解析)
- VDA6.3基礎(chǔ)培訓(xùn)考核測(cè)試卷附答案
- 第01講 正數(shù)和負(fù)數(shù)、有理數(shù)-人教版新七年級(jí)《數(shù)學(xué)》暑假自學(xué)提升講義(解析版)
- 信息系統(tǒng)部署與運(yùn)維-題庫(kù)帶答案
- 婚姻心理學(xué)解讀包含內(nèi)容
- DZ/T 0462.3-2023 礦產(chǎn)資源“三率”指標(biāo)要求 第3部分:鐵、錳、鉻、釩、鈦(正式版)
- 備戰(zhàn)2024年高考英語(yǔ)考試易錯(cuò)點(diǎn)12 名詞性從句(4大陷阱)(解析版)
- 公務(wù)員歷史常識(shí)100題及一套完整答案
評(píng)論
0/150
提交評(píng)論