版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年四川省資陽(yáng)市成考專升本高等數(shù)學(xué)一自考真題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(50題)1.。A.
B.
C.
D.
2.A.A.
B.
C.
D.
3.設(shè)f(x)為連續(xù)函數(shù),則等于().A.A.f(x)-f(a)B.f(a)-f(x)C.f(x)D.f(a)
4.方程x2+y2-2z=0表示的二次曲面是.
A.柱面B.球面C.旋轉(zhuǎn)拋物面D.橢球面
5.對(duì)于微分方程y"-2y'+y=xex,利用待定系數(shù)法求其特解y*時(shí),下列特解設(shè)法正確的是()。A.y*=(Ax+B)ex
B.y*=x(Ax+B)ex
C.y*=Ax3ex
D.y*=x2(Ax+B)ex
6.
7.設(shè)y=e-3x,則dy=A.e-3xdx
B.-e-3xdx
C.-3e-3xdx
D.3e-3xdx
8.
9.設(shè)Y=x2-2x+a,貝0點(diǎn)x=1()。A.為y的極大值點(diǎn)B.為y的極小值點(diǎn)C.不為y的極值點(diǎn)D.是否為y的極值點(diǎn)與a有關(guān)
10.
11.設(shè)f'(x0)=1,則等于().A.A.3B.2C.1D.1/2
12.圖示結(jié)構(gòu)中,F(xiàn)=10KN,1為圓桿,直徑d=15mm,2為正方形截面桿,邊長(zhǎng)為a=20mm,a=30。,則各桿強(qiáng)度計(jì)算有誤的一項(xiàng)為()。
A.1桿受力20KNB.2桿受力17.3KNC.1桿拉應(yīng)力50MPaD.2桿壓應(yīng)力43.3MPa
13.
14.
15.力偶對(duì)剛體產(chǎn)生哪種運(yùn)動(dòng)效應(yīng)()。
A.既能使剛體轉(zhuǎn)動(dòng),又能使剛體移動(dòng)B.與力產(chǎn)生的運(yùn)動(dòng)效應(yīng)有時(shí)候相同,有時(shí)不同C.只能使剛體轉(zhuǎn)動(dòng)D.只能使剛體移動(dòng)16.設(shè)區(qū)域,將二重積分在極坐標(biāo)系下化為二次積分為()A.A.
B.
C.
D.
17.
18.
19.設(shè)z=x2+y2,dz=()。
A.2ex2+y2(xdx+ydy)
B.2ex2+y2(zdy+ydx)
C.ex2+y2(xdx+ydy)
D.2ex2+y2(dx2+dy2)
20.
21.A.A.
B.e
C.e2
D.1
22.若xo為f(x)的極值點(diǎn),則()A.A.f(xo)必定存在,且f(xo)=0
B.f(xo)必定存在,但f(xo)不一定等于零
C.f(xo)可能不存在
D.f(xo)必定不存在
23.
24.A.0B.1C.2D.-1
25.設(shè)函數(shù)f(x)與g(x)均在(α,b)可導(dǎo),且滿足f'(x)<g'(x),則f(x)與g(x)的關(guān)系是
A.必有f(x)>g(x)B.必有f(x)<g(x)C.必有f(x)=g(x)D.不能確定大小
26.
27.
28.A.A.
B.
C.
D.
29.
30.
31.若y(x-1)=x2-1,則y'(x)等于()A.2x+2B.x(x+1)C.x(x-1)D.2x-1
32.
33.
34.()A.A.2xy+y2
B.x2+2xy
C.4xy
D.x2+y2
35.A.exln2
B.e2xln2
C.ex+ln2
D.e2x+ln2
36.A.2B.-2C.-1D.137.設(shè)f(x)=e3x,則在x=0處的二階導(dǎo)數(shù)f"(0)=A.A.3B.6C.9D.9e
38.
A.
B.
C.
D.
39.
A.單調(diào)增加且收斂B.單調(diào)減少且收斂C.收斂于零D.發(fā)散
40.
41.設(shè)有直線當(dāng)直線l1與l2平行時(shí),λ等于().
A.1B.0C.-1/2D.-1
42.
43.
A.
B.
C.
D.
44.
45.以下結(jié)論正確的是().
A.
B.
C.
D.
46.A.A.2/3B.3/2C.2D.3
47.函數(shù)y=ex+arctanx在區(qū)間[-1,1]上
A.單調(diào)減少B.單調(diào)增加C.無(wú)最大值D.無(wú)最小值48.設(shè)等于()A.A.-1B.1C.-cos1D.1-cos149.當(dāng)x→0時(shí),2x+x2與x2比較是A.A.高階無(wú)窮小B.低階無(wú)窮小C.同階但不等價(jià)無(wú)窮小D.等價(jià)無(wú)窮小
50.設(shè)x=1為y=x3-ax的極小值點(diǎn),則a等于().
A.3
B.
C.1
D.1/3
二、填空題(20題)51.
52.
53.
54.
55.
56.
57.級(jí)數(shù)的收斂區(qū)間為_(kāi)_____.58.設(shè),則f'(x)=______.59.60.函數(shù)的間斷點(diǎn)為_(kāi)_____.
61.
62.63.
64.
65.
66.
67.
68.
69.
70.
三、計(jì)算題(20題)71.
72.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).73.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.
74.
75.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.76.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.77.求微分方程的通解.78.
79.證明:80.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).81.求曲線在點(diǎn)(1,3)處的切線方程.82.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
83.84.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.85.
86.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
87.88.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則
89.
90.求微分方程y"-4y'+4y=e-2x的通解.
四、解答題(10題)91.
92.
93.
94.
95.
96.求曲線y=x2+1在點(diǎn)(1,2)處的切線方程.并求該曲線與所求切線及x=0所圍成的平面圖形的面積.97.
98.
99.100.將f(x)=1/3-x展開(kāi)為(x+2)的冪級(jí)數(shù),并指出其收斂區(qū)間。五、高等數(shù)學(xué)(0題)101.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
六、解答題(0題)102.設(shè)y=xcosx,求y'.
參考答案
1.A本題考查的知識(shí)點(diǎn)為定積分換元積分法。
因此選A。
2.D本題考查的知識(shí)點(diǎn)為二階常系數(shù)線性非齊次微分方程特解y*的取法:
3.C本題考查的知識(shí)點(diǎn)為可變限積分求導(dǎo).
由于當(dāng)f(x)連續(xù)時(shí),,可知應(yīng)選C.
4.C本題考查了二次曲面的知識(shí)點(diǎn)。x2+y2-2z=0可化為x2/2+y2/2=z,故表示的是旋轉(zhuǎn)拋物面。
5.D特征方程為r2-2r+1=0,特征根為r=1(二重根),f(x)=xex,α=1為特征根,因此原方程特解y*=x2(Ax+B)ex,因此選D。
6.D
7.C
8.B
9.B本題考查的知識(shí)點(diǎn)為一元函數(shù)的極值。求解的一般步驟為:先求出函數(shù)的一階導(dǎo)數(shù),令偏導(dǎo)數(shù)等于零,確定函數(shù)的駐點(diǎn).再依極值的充分條件來(lái)判定所求駐點(diǎn)是否為極值點(diǎn)。由于y=x2-2x+a,可由y'=2x-2=0,解得y有唯一駐點(diǎn)x=1.又由于y"=2,可得知y"|x=1=2>0。由極值的充分條件可知x=1為y的極小值點(diǎn),故應(yīng)選B。如果利用配方法,可得y=(x-1)2+a-1≥a-1,且y|x=1=a-1,由極值的定義可知x=1為y的極小值點(diǎn),因此選B。
10.D
11.B本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的定義.
由題設(shè)知f'(x0)=1,又由題設(shè)條件知
可知應(yīng)選B.
12.C
13.D
14.D解析:
15.A
16.A本題考查的知識(shí)點(diǎn)為將二重積分化為極坐標(biāo)系下的二次積分.
由于在極坐標(biāo)系下積分區(qū)域D可以表示為
0≤θ≤π,0≤r≤a.
因此
故知應(yīng)選A.
17.A
18.B
19.A∵z=ex+y∴z"=ex2+y22x;zy"=ex2+y22y∴dz=ex2+y22xdx+ex2+y22ydy
20.C解析:
21.C本題考查的知識(shí)點(diǎn)為重要極限公式.
22.C
23.A
24.C
25.D解析:由f'(x)<g'(x)知,在(α,b)內(nèi),g(x)的變化率大于f(x)的變化率,由于沒(méi)有g(shù)(α)與f(α)的已知條件,無(wú)法判明f(x)與g(x)的關(guān)系。
26.B
27.B
28.A
29.B
30.A
31.A因f(x-1)=x2-1,故f(x)=(x+1)2-1=x2+2x,則f'(x)=2x+2.
32.A
33.B
34.A
35.B本題考查了一階線性齊次方程的知識(shí)點(diǎn)。
因f'(x)=f(x)·2,即y'=2y,此為常系數(shù)一階線性齊次方程,其特征根為r=2,所以其通解為y=Ce2x,又當(dāng)x=0時(shí),f(0)=ln2,所以C=In2,故f(x)=e2xln2.
注:方程y'=2y求解時(shí)也可用變量分離.
36.A
37.Cf(x)=e3x,f'(x)=3e3x,f"(x)=9e3x,f"(0)=9,因此選C。
38.B
39.C解析:
40.B
41.C解析:
42.B
43.B本題考查的知識(shí)點(diǎn)為交換二次積分次序。由所給二次積分可知積分區(qū)域D可以表示為1≤y≤2,y≤x≤2,交換積分次序后,D可以表示為1≤x≤2,1≤y≤x,故應(yīng)選B。
44.A
45.C
46.A
47.B本題考查了函數(shù)的單調(diào)性的知識(shí)點(diǎn),
因y'=ex+1/(1+x2)>0處處成立,于是函數(shù)在(-∞,+∞)內(nèi)都是單調(diào)增加的,故在[-1,1]上單調(diào)增加。
48.B本題考查的知識(shí)點(diǎn)為可變上限的積分.
由于,從而知
可知應(yīng)選B.
49.B
50.A解析:本題考查的知識(shí)點(diǎn)為判定極值的必要條件.
由于y=x3-ax,y'=3x2-a,令y'=0,可得
由于x=1為y的極小值點(diǎn),因此y'|x=1=0,從而知
故應(yīng)選A.
51.1/3
52.
53.(-24)(-2,4)解析:
54.
55.tanθ-cotθ+C
56.
解析:57.(-1,1)本題考查的知識(shí)點(diǎn)為求冪級(jí)數(shù)的收斂區(qū)間.
所給級(jí)數(shù)為不缺項(xiàng)情形.
可知收斂半徑,因此收斂區(qū)間為
(-1,1).
注:《綱》中指出,收斂區(qū)間為(-R,R),不包括端點(diǎn).
本題一些考生填1,這是誤將收斂區(qū)間看作收斂半徑,多數(shù)是由于考試時(shí)過(guò)于緊張而導(dǎo)致的錯(cuò)誤.
58.本題考查的知識(shí)點(diǎn)為復(fù)合函數(shù)導(dǎo)數(shù)的運(yùn)算.
59.1/z本題考查了二元函數(shù)的二階偏導(dǎo)數(shù)的知識(shí)點(diǎn)。60.本題考查的知識(shí)點(diǎn)為判定函數(shù)的間斷點(diǎn).
僅當(dāng),即x=±1時(shí),函數(shù)沒(méi)有定義,因此x=±1為函數(shù)的間斷點(diǎn)。
61.
解析:62.本題考查的知識(shí)點(diǎn)為極限運(yùn)算.
63.
64.y=-e-x+C
65.2
66.
67.-2
68.
69.
70.
解析:71.由一階線性微分方程通解公式有
72.
列表:
說(shuō)明
73.函數(shù)的定義域?yàn)?/p>
注意
74.75.由二重積分物理意義知
76.
77.
78.
則
79.
80.81.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
82.
83.
84.
85.
86.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
87.
88.由等價(jià)無(wú)窮小量的定義可知
89.
90.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
91.
92.
93.
9
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度洗浴中心特色服務(wù)項(xiàng)目開(kāi)發(fā)與運(yùn)營(yíng)合同4篇
- 2025年度智能制造車間承包運(yùn)營(yíng)管理合同協(xié)議書2篇
- 2024版物聯(lián)網(wǎng)技術(shù)開(kāi)發(fā)合同
- 2025年度櫥柜與廚房設(shè)施安裝服務(wù)合同包含后期維護(hù)保障3篇
- 2024遠(yuǎn)洋漁業(yè)運(yùn)輸合作協(xié)議
- 2025年工業(yè)廠房出租安全生產(chǎn)監(jiān)督協(xié)議書模板3篇
- 2025年度文化產(chǎn)品代理合同終止協(xié)議范本4篇
- 2025年度住宅小區(qū)車位租賃糾紛調(diào)解服務(wù)合同4篇
- 2025年度新能源汽車充電設(shè)施建設(shè)合作合同4篇
- 2025年度生物制藥研發(fā)項(xiàng)目出資入股分紅協(xié)議書3篇
- 國(guó)家自然科學(xué)基金項(xiàng)目申請(qǐng)書
- 電力電纜故障分析報(bào)告
- 中國(guó)電信網(wǎng)絡(luò)資源管理系統(tǒng)介紹
- 2024年浙江首考高考選考技術(shù)試卷試題真題(答案詳解)
- 《品牌形象設(shè)計(jì)》課件
- 倉(cāng)庫(kù)管理基礎(chǔ)知識(shí)培訓(xùn)課件1
- 藥品的收貨與驗(yàn)收培訓(xùn)課件
- GH-T 1388-2022 脫水大蒜標(biāo)準(zhǔn)規(guī)范
- 高中英語(yǔ)人教版必修第一二冊(cè)語(yǔ)境記單詞清單
- 政府機(jī)關(guān)保潔服務(wù)投標(biāo)方案(技術(shù)方案)
- HIV感染者合并慢性腎病的治療指南
評(píng)論
0/150
提交評(píng)論