版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如圖,中,點(diǎn)D在BC上,,將沿AD旋轉(zhuǎn)得到三棱錐,分別記,與平面ADC所成角為,,則,的大小關(guān)系是()A. B.C.,兩種情況都存在 D.存在某一位置使得2.函數(shù)(其中是自然對(duì)數(shù)的底數(shù))的大致圖像為()A. B. C. D.3.已知函數(shù),且關(guān)于的方程有且只有一個(gè)實(shí)數(shù)根,則實(shí)數(shù)的取值范圍().A. B. C. D.4.已知是橢圓和雙曲線的公共焦點(diǎn),是它們的-一個(gè)公共點(diǎn),且,設(shè)橢圓和雙曲線的離心率分別為,則的關(guān)系為()A. B.C. D.5.中國(guó)的國(guó)旗和國(guó)徽上都有五角星,正五角星與黃金分割有著密切的聯(lián)系,在如圖所示的正五角星中,以、、、、為頂點(diǎn)的多邊形為正五邊形,且,則()A. B. C. D.6.在三棱錐中,,,,,點(diǎn)到底面的距離為2,則三棱錐外接球的表面積為()A. B. C. D.7.若不等式對(duì)于一切恒成立,則的最小值是()A.0 B. C. D.8.2019年10月1日,為了慶祝中華人民共和國(guó)成立70周年,小明、小紅、小金三人以國(guó)慶為主題各自獨(dú)立完成一幅十字繡贈(zèng)送給當(dāng)?shù)氐拇逦瘯?huì),這三幅十字繡分別命名為“鴻福齊天”、“國(guó)富民強(qiáng)”、“興國(guó)之路”,為了弄清“國(guó)富民強(qiáng)”這一作品是誰(shuí)制作的,村支書對(duì)三人進(jìn)行了問(wèn)話,得到回復(fù)如下:小明說(shuō):“鴻福齊天”是我制作的;小紅說(shuō):“國(guó)富民強(qiáng)”不是小明制作的,就是我制作的;小金說(shuō):“興國(guó)之路”不是我制作的,若三人的說(shuō)法有且僅有一人是正確的,則“鴻福齊天”的制作者是()A.小明 B.小紅 C.小金 D.小金或小明9.已知直線:與圓:交于,兩點(diǎn),與平行的直線與圓交于,兩點(diǎn),且與的面積相等,給出下列直線:①,②,③,④.其中滿足條件的所有直線的編號(hào)有()A.①② B.①④ C.②③ D.①②④10.如圖,圓是邊長(zhǎng)為的等邊三角形的內(nèi)切圓,其與邊相切于點(diǎn),點(diǎn)為圓上任意一點(diǎn),,則的最大值為()A. B. C.2 D.11.設(shè)等比數(shù)列的前項(xiàng)和為,若,則的值為()A. B. C. D.12.如圖所示,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗線畫出的是由一個(gè)棱柱挖去一個(gè)棱錐后的幾何體的三視圖,則該幾何體的體積為A.72 B.64 C.48 D.32二、填空題:本題共4小題,每小題5分,共20分。13.已知向量,,,則_________.14.某外商計(jì)劃在個(gè)候選城市中投資個(gè)不同的項(xiàng)目,且在同一個(gè)城市投資的項(xiàng)目不超過(guò)個(gè),則該外商不同的投資方案有____種.15.在平面五邊形中,,,,且.將五邊形沿對(duì)角線折起,使平面與平面所成的二面角為,則沿對(duì)角線折起后所得幾何體的外接球的表面積是______.16.已知定義在的函數(shù)滿足,且當(dāng)時(shí),,則的解集為__________________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知橢圓的中心在坐標(biāo)原點(diǎn),其短半軸長(zhǎng)為,一個(gè)焦點(diǎn)坐標(biāo)為,點(diǎn)在橢圓上,點(diǎn)在直線上的點(diǎn),且.證明:直線與圓相切;求面積的最小值.18.(12分)如圖1,四邊形是邊長(zhǎng)為2的菱形,,為的中點(diǎn),以為折痕將折起到的位置,使得平面平面,如圖2.(1)證明:平面平面;(2)求點(diǎn)到平面的距離.19.(12分)在如圖所示的四棱錐中,四邊形是等腰梯形,,,平面,,.(1)求證:平面;(2)已知二面角的余弦值為,求直線與平面所成角的正弦值.20.(12分)如圖,在四棱錐中底面是菱形,,是邊長(zhǎng)為的正三角形,,為線段的中點(diǎn).求證:平面平面;是否存在滿足的點(diǎn),使得?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.21.(12分)在世界讀書日期間,某地區(qū)調(diào)查組對(duì)居民閱讀情況進(jìn)行了調(diào)查,獲得了一個(gè)容量為200的樣本,其中城鎮(zhèn)居民140人,農(nóng)村居民60人.在這些居民中,經(jīng)常閱讀的城鎮(zhèn)居民有100人,農(nóng)村居民有30人.(1)填寫下面列聯(lián)表,并判斷能否有99%的把握認(rèn)為經(jīng)常閱讀與居民居住地有關(guān)?城鎮(zhèn)居民農(nóng)村居民合計(jì)經(jīng)常閱讀10030不經(jīng)常閱讀合計(jì)200(2)從該地區(qū)城鎮(zhèn)居民中,隨機(jī)抽取5位居民參加一次閱讀交流活動(dòng),記這5位居民中經(jīng)常閱讀的人數(shù)為,若用樣本的頻率作為概率,求隨機(jī)變量的期望.附:,其中.0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.82822.(10分)在中,角的對(duì)邊分別為,且.(1)求角的大?。唬?)若,求邊上的高.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.A【解析】
根據(jù)題意作出垂線段,表示出所要求得、角,分別表示出其正弦值進(jìn)行比較大小,從而判斷出角的大小,即可得答案.【詳解】由題可得過(guò)點(diǎn)作交于點(diǎn),過(guò)作的垂線,垂足為,則易得,.設(shè),則有,,,可得,.,,;,;,,,.綜上可得,.故選:.【點(diǎn)睛】本題考查空間直線與平面所成的角的大小關(guān)系,考查三角函數(shù)的圖象和性質(zhì),意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.2.D【解析】由題意得,函數(shù)點(diǎn)定義域?yàn)榍遥远x域關(guān)于原點(diǎn)對(duì)稱,且,所以函數(shù)為奇函數(shù),圖象關(guān)于原點(diǎn)對(duì)稱,故選D.3.B【解析】
根據(jù)條件可知方程有且只有一個(gè)實(shí)根等價(jià)于函數(shù)的圖象與直線只有一個(gè)交點(diǎn),作出圖象,數(shù)形結(jié)合即可.【詳解】解:因?yàn)闂l件等價(jià)于函數(shù)的圖象與直線只有一個(gè)交點(diǎn),作出圖象如圖,由圖可知,,故選:B.【點(diǎn)睛】本題主要考查函數(shù)圖象與方程零點(diǎn)之間的關(guān)系,數(shù)形結(jié)合是關(guān)鍵,屬于基礎(chǔ)題.4.A【解析】
設(shè)橢圓的半長(zhǎng)軸長(zhǎng)為,雙曲線的半長(zhǎng)軸長(zhǎng)為,根據(jù)橢圓和雙曲線的定義得:,解得,然后在中,由余弦定理得:,化簡(jiǎn)求解.【詳解】設(shè)橢圓的長(zhǎng)半軸長(zhǎng)為,雙曲線的長(zhǎng)半軸長(zhǎng)為,由橢圓和雙曲線的定義得:,解得,設(shè),在中,由余弦定理得:,化簡(jiǎn)得,即.故選:A【點(diǎn)睛】本題主要考查橢圓,雙曲線的定義和性質(zhì)以及余弦定理的應(yīng)用,還考查了運(yùn)算求解的能力,屬于中檔題.5.A【解析】
利用平面向量的概念、平面向量的加法、減法、數(shù)乘運(yùn)算的幾何意義,便可解決問(wèn)題.【詳解】解:.故選:A【點(diǎn)睛】本題以正五角星為載體,考查平面向量的概念及運(yùn)算法則等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想,屬于基礎(chǔ)題.6.C【解析】
首先根據(jù)垂直關(guān)系可確定,由此可知為三棱錐外接球的球心,在中,可以算出的一個(gè)表達(dá)式,在中,可以計(jì)算出的一個(gè)表達(dá)式,根據(jù)長(zhǎng)度關(guān)系可構(gòu)造等式求得半徑,進(jìn)而求出球的表面積.【詳解】取中點(diǎn),由,可知:,為三棱錐外接球球心,過(guò)作平面,交平面于,連接交于,連接,,,,,,為的中點(diǎn)由球的性質(zhì)可知:平面,,且.設(shè),,,,在中,,即,解得:,三棱錐的外接球的半徑為:,三棱錐外接球的表面積為.故選:.【點(diǎn)睛】本題考查三棱錐外接球的表面積的求解問(wèn)題,求解幾何體外接球相關(guān)問(wèn)題的關(guān)鍵是能夠利用球的性質(zhì)確定外接球球心的位置.7.C【解析】
試題分析:將參數(shù)a與變量x分離,將不等式恒成立問(wèn)題轉(zhuǎn)化為求函數(shù)最值問(wèn)題,即可得到結(jié)論.解:不等式x2+ax+1≥0對(duì)一切x∈(0,]成立,等價(jià)于a≥-x-對(duì)于一切成立,∵y=-x-在區(qū)間上是增函數(shù)∴∴a≥-∴a的最小值為-故答案為C.考點(diǎn):不等式的應(yīng)用點(diǎn)評(píng):本題綜合考查了不等式的應(yīng)用、不等式的解法等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想,屬于中檔題8.B【解析】
將三個(gè)人制作的所有情況列舉出來(lái),再一一論證.【詳解】依題意,三個(gè)人制作的所有情況如下所示:123456鴻福齊天小明小明小紅小紅小金小金國(guó)富民強(qiáng)小紅小金小金小明小紅小明興國(guó)之路小金小紅小明小金小明小紅若小明的說(shuō)法正確,則均不滿足;若小紅的說(shuō)法正確,則4滿足;若小金的說(shuō)法正確,則3滿足.故“鴻福齊天”的制作者是小紅,故選:B.【點(diǎn)睛】本題考查推理與證明,還考查推理論證能力以及分類討論思想,屬于基礎(chǔ)題.9.D【解析】
求出圓心到直線的距離為:,得出,根據(jù)條件得出到直線的距離或時(shí)滿足條件,即可得出答案.【詳解】解:由已知可得:圓:的圓心為(0,0),半徑為2,則圓心到直線的距離為:,∴,而,與的面積相等,∴或,即到直線的距離或時(shí)滿足條件,根據(jù)點(diǎn)到直線距離可知,①②④滿足條件.故選:D.【點(diǎn)睛】本題考查直線與圓的位置關(guān)系的應(yīng)用,涉及點(diǎn)到直線的距離公式.10.C【解析】
建立坐標(biāo)系,寫出相應(yīng)的點(diǎn)坐標(biāo),得到的表達(dá)式,進(jìn)而得到最大值.【詳解】以D點(diǎn)為原點(diǎn),BC所在直線為x軸,AD所在直線為y軸,建立坐標(biāo)系,設(shè)內(nèi)切圓的半徑為1,以(0,1)為圓心,1為半徑的圓;根據(jù)三角形面積公式得到,可得到內(nèi)切圓的半徑為可得到點(diǎn)的坐標(biāo)為:故得到故得到,故最大值為:2.故答案為C.【點(diǎn)睛】這個(gè)題目考查了向量標(biāo)化的應(yīng)用,以及參數(shù)方程的應(yīng)用,以向量為載體求相關(guān)變量的取值范圍,是向量與函數(shù)、不等式、三角函數(shù)等相結(jié)合的一類綜合問(wèn)題.通過(guò)向量的運(yùn)算,將問(wèn)題轉(zhuǎn)化為解不等式或求函數(shù)值域,是解決這類問(wèn)題的一般方法.11.C【解析】
求得等比數(shù)列的公比,然后利用等比數(shù)列的求和公式可求得的值.【詳解】設(shè)等比數(shù)列的公比為,,,,因此,.故選:C.【點(diǎn)睛】本題考查等比數(shù)列求和公式的應(yīng)用,解答的關(guān)鍵就是求出等比數(shù)列的公比,考查計(jì)算能力,屬于基礎(chǔ)題.12.B【解析】
由三視圖可知該幾何體是一個(gè)底面邊長(zhǎng)為4的正方形,高為5的正四棱柱,挖去一個(gè)底面邊長(zhǎng)為4,高為3的正四棱錐,利用體積公式,即可求解?!驹斀狻坑深}意,幾何體的三視圖可知該幾何體是一個(gè)底面邊長(zhǎng)為4的正方形,高為5的正四棱柱,挖去一個(gè)底面邊長(zhǎng)為4,高為3的正四棱錐,所以幾何體的體積為,故選B。【點(diǎn)睛】本題考查了幾何體的三視圖及體積的計(jì)算,在由三視圖還原為空間幾何體的實(shí)際形狀時(shí),要根據(jù)三視圖的規(guī)則,空間幾何體的可見(jiàn)輪廓線在三視圖中為實(shí)線,不可見(jiàn)輪廓線在三視圖中為虛線。求解以三視圖為載體的空間幾何體的表面積與體積的關(guān)鍵是由三視圖確定直觀圖的形狀以及直觀圖中線面的位置關(guān)系和數(shù)量關(guān)系,利用相應(yīng)公式求解。二、填空題:本題共4小題,每小題5分,共20分。13.2【解析】
由得,算出,再代入算出即可.【詳解】,,,,解得:,,則.故答案為:2【點(diǎn)睛】本題主要考查了向量的坐標(biāo)運(yùn)算,向量垂直的性質(zhì),向量的模的計(jì)算.14.60【解析】試題分析:每個(gè)城市投資1個(gè)項(xiàng)目有種,有一個(gè)城市投資2個(gè)有種,投資方案共種.考點(diǎn):排列組合.15.【解析】
設(shè)的中心為,矩形的中心為,過(guò)作垂直于平面的直線,過(guò)作垂直于平面的直線,得到直線與的交點(diǎn)為幾何體外接球的球心,結(jié)合三角形的性質(zhì),求得球的半徑,利用表面積公式,即可求解.【詳解】設(shè)的中心為,矩形的中心為,過(guò)作垂直于平面的直線,過(guò)作垂直于平面的直線,則由球的性質(zhì)可知,直線與的交點(diǎn)為幾何體外接球的球心,取的中點(diǎn),連接,,由條件得,,連接,因?yàn)?,從而,連接,則為所得幾何體外接球的半徑,在直角中,由,,可得,即外接球的半徑為,故所得幾何體外接球的表面積為.故答案為:.【點(diǎn)睛】本題主要考查了空間幾何體的結(jié)構(gòu)特征,以及多面體的外接球的表面積的計(jì)算,其中解答中熟記空間幾何體的結(jié)構(gòu)特征,求得外接球的半徑是解答的關(guān)鍵,著重考查了空間想象能力與運(yùn)算求解能力,屬于中檔試題.16.【解析】
由已知得出函數(shù)是偶函數(shù),再得出函數(shù)的單調(diào)性,得出所解不等式的等價(jià)的不等式,可得解集.【詳解】因?yàn)槎x在的函數(shù)滿足,所以函數(shù)是偶函數(shù),又當(dāng)時(shí),,得時(shí),,所以函數(shù)在上單調(diào)遞減,所以函數(shù)在上單調(diào)遞減,函數(shù)在上單調(diào)遞增,所以不等式等價(jià)于,即或,解得或,所以不等式的解集為:.故答案為:.【點(diǎn)睛】本題考查抽象函數(shù)的不等式的求解,關(guān)鍵得出函數(shù)的奇偶性,單調(diào)性,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.證明見(jiàn)解析;1.【解析】
由題意可得橢圓的方程為,由點(diǎn)在直線上,且知的斜率必定存在,分類討論當(dāng)?shù)男甭蕿闀r(shí)和斜率不為時(shí)的情況列出相應(yīng)式子,即可得出直線與圓相切;由知,的面積為【詳解】解:由題意,橢圓的焦點(diǎn)在軸上,且,所以.所以橢圓的方程為.由點(diǎn)在直線上,且知的斜率必定存在,當(dāng)?shù)男甭蕿闀r(shí),,,于是,到的距離為,直線與圓相切.當(dāng)?shù)男甭什粸闀r(shí),設(shè)的方程為,與聯(lián)立得,所以,,從而.而,故的方程為,而在上,故,從而,于是.此時(shí),到的距離為,直線與圓相切.綜上,直線與圓相切.由知,的面積為,上式中,當(dāng)且僅當(dāng)?shù)忍?hào)成立,所以面積的最小值為1.【點(diǎn)睛】本題主要考查直線與橢圓的位置關(guān)系、直線與圓的位置關(guān)系等基礎(chǔ)知識(shí),考查運(yùn)算求解能力、推理論證能力和創(chuàng)新意識(shí),考查化歸與轉(zhuǎn)化思想,屬于難題.18.(1)證明見(jiàn)解析(2)【解析】
(1)由題意可證得,,所以平面,則平面平面可證;(2)解法一:利用等體積法由可求出點(diǎn)到平面的距離;解法二:由條件知點(diǎn)到平面的距離等于點(diǎn)到平面的距離,過(guò)點(diǎn)作的垂線,垂足,證明平面,計(jì)算出即可.【詳解】解法一:(1)依題意知,因?yàn)?,所?又平面平面,平面平面,平面,所以平面.又平面,所以.由已知,是等邊三角形,且為的中點(diǎn),所以.因?yàn)?,所?又,所以平面.又平面,所以平面平面.(2)在中,,,所以.由(1)知,平面,且,所以三棱錐的體積.在中,,,得,由(1)知,平面,所以,所以,設(shè)點(diǎn)到平面的距離,則三棱錐的體積,得.解法二:(1)同解法一;(2)因?yàn)?,平面,平面,所以平?所以點(diǎn)到平面的距離等于點(diǎn)到平面的距離.過(guò)點(diǎn)作的垂線,垂足,即.由(1)知,平面平面,平面平面,平面,所以平面,即為點(diǎn)到平面的距離.由(1)知,,在中,,,得.又,所以.所以點(diǎn)到平面的距離為.【點(diǎn)睛】本題主要考查空間面面垂直的的判定及點(diǎn)到面的距離,考查學(xué)生的空間想象能力、推理論證能力、運(yùn)算求解能力.求點(diǎn)到平面的距離一般可采用兩種方法求解:①等體積法;②作(找)出點(diǎn)到平面的垂線段,進(jìn)行計(jì)算即可.19.(1)證明見(jiàn)解析;(2).【解析】
(1)由已知可得,結(jié)合,由直線與平面垂直的判定可得平面;(2)由(1)知,,則,,兩兩互相垂直,以為坐標(biāo)原點(diǎn),分別以,,所在直線為,,軸建立空間直角坐標(biāo)系,設(shè),0,,由二面角的余弦值為求解,再由空間向量求解直線與平面所成角的正弦值.【詳解】(1)證明:因?yàn)樗倪呅问堑妊菪危?,,所?又,所以,因此,,又,且,,平面,所以平面.(2)取的中點(diǎn),連接,,由于,因此,又平面,平面,所以.由于,,平面,所以平面,故,所以為二面角的平面角.在等腰三角形中,由于,因此,又,因?yàn)椋?,所以以為軸、為軸、為軸建立空間直角坐標(biāo)系,則,,,,設(shè)平面的法向量為所以,即,令,則,,則平面的法向量,,設(shè)直線與平面所成角為,則【點(diǎn)睛】本題考查直線與平面垂直的判定,考查空間想象能力與思維能力,訓(xùn)練了利用空間向量求解空間角,屬于中檔題.20.證明見(jiàn)解析;2.【解析】
利用面面垂直的判定定理證明即可;由,知,所以可得出,因此,的充要條件是,繼而得出的值.【詳解】解:證明:因?yàn)槭钦切?,為線段的中點(diǎn),所以.因?yàn)槭橇庑?,?/p>
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年生態(tài)環(huán)境治理保護(hù)合同
- 2024年版項(xiàng)目監(jiān)工聘用合同
- 特崗英語(yǔ)課程設(shè)計(jì)
- 現(xiàn)代詩(shī)課程設(shè)計(jì)分享
- 電子表課程設(shè)計(jì)c語(yǔ)言
- 測(cè)繪工程課程設(shè)計(jì)選題
- 社交軟件銷售工作總結(jié)
- 航空航天顧問(wèn)工作總結(jié)
- 保健品行業(yè)營(yíng)銷策略總結(jié)
- 餐飲團(tuán)購(gòu)前臺(tái)工作總結(jié)
- 患者轉(zhuǎn)診記錄單
- 美好生活“油”此而來(lái)-暨南大學(xué)中國(guó)大學(xué)mooc課后章節(jié)答案期末考試題庫(kù)2023年
- 買賣合同糾紛案民事判決書
- 神經(jīng)內(nèi)科應(yīng)急預(yù)案完整版
- 2023零售藥店醫(yī)保培訓(xùn)試題及答案篇
- UCC3895芯片內(nèi)部原理解析
- 混凝土設(shè)計(jì)的各種表格
- 保安員培訓(xùn)教學(xué)大綱
- 廣東省高等學(xué)?!扒О偈こ獭钡诹^續(xù)培養(yǎng)對(duì)象和第
- 【企業(yè)杜邦分析國(guó)內(nèi)外文獻(xiàn)綜述6000字】
- taft波完整版可編輯
評(píng)論
0/150
提交評(píng)論