版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年山西省陽(yáng)泉市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(20題)1.
2.
3.設(shè)函數(shù)f(x)=2sinx,則f(x)等于().
A.2sinxB.2cosxC.-2sinxD.-2cosx
4.
5.設(shè)y=5x,則y'=A.A.5xln5
B.5x/ln5
C.x5x-1
D.5xlnx
6.A.沒(méi)有漸近線B.僅有水平漸近線C.僅有鉛直漸近線D.既有水平漸近線,又有鉛直漸近線
7.
8.設(shè)函數(shù)Y=e-x,則Y'等于().A.A.-ex
B.ex
C.-e-xQ258
D.e-x
9.()。A.2πB.πC.π/2D.π/4
10.
11.A.3B.2C.1D.1/212.A.A.小于0B.大于0C.等于0D.不確定
13.設(shè)y=exsinx,則y'''=
A.cosx·ex
B.sinx·ex
C.2ex(cosx-sinx)
D.2ex(sinx-cosx)
14.
15.下列函數(shù)在指定區(qū)間上滿足羅爾中值定理?xiàng)l件的是()。A.
B.
C.
D.
16.設(shè)∫0xf(t)dt=xsinx,則f(x)=()A.sinx+xcosxB.sinx-xcosxC.xcosx-sinxD.-(sinx+xcosx)17.
在x=0處()。A.間斷B.可導(dǎo)C.可微D.連續(xù)但不可導(dǎo)
18.設(shè)y=2x3,則dy=().
A.2x2dx
B.6x2dx
C.3x2dx
D.x2dx
19.
20.
二、填空題(20題)21.
22.23.設(shè)z=ln(x2+y),則全微分dz=__________。24.過(guò)點(diǎn)M0(2,0,-1)且平行于的直線方程為_(kāi)_____.
25.
26.27.28.29.微分方程exy'=1的通解為_(kāi)_____.30.冪級(jí)數(shù)的收斂半徑為_(kāi)_______。
31.
32.y"+8y=0的特征方程是________。
33.設(shè),將此積分化為極坐標(biāo)系下的積分,此時(shí)I=______.
34.
35.
36.
37.38.
39.
40.三、計(jì)算題(20題)41.求曲線在點(diǎn)(1,3)處的切線方程.42.
43.
44.求微分方程y"-4y'+4y=e-2x的通解.
45.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
46.
47.
48.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.49.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).
50.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
51.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).52.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則53.證明:54.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.55.
56.求微分方程的通解.57.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.58.59.60.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.四、解答題(10題)61.62.設(shè)區(qū)域D為:63.
64.
65.
66.
67.
68.
69.設(shè)D是由曲線x=1-y2與x軸、y軸,在第一象限圍成的有界區(qū)域.求:(1)D的面積S;(2)D繞x軸旋轉(zhuǎn)所得旋轉(zhuǎn)體的體積V.
70.五、高等數(shù)學(xué)(0題)71.=()。A.
B.
C.
D.
六、解答題(0題)72.
(1)切點(diǎn)A的坐標(biāo)(a,a2).
(2)過(guò)切點(diǎn)A的切線方程。
參考答案
1.B解析:
2.D
3.B本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的運(yùn)算.
f(x)=2sinx,
f(x)=2(sinx)≈2cosx.
可知應(yīng)選B.
4.A
5.A由導(dǎo)數(shù)公式可知(5x)'=5xln5,故選A。
6.D
7.C
8.C本題考查的知識(shí)點(diǎn)為復(fù)合函數(shù)導(dǎo)數(shù)的運(yùn)算.
由復(fù)合函數(shù)的導(dǎo)數(shù)鏈?zhǔn)椒▌t知
可知應(yīng)選C.
9.B
10.D
11.B,可知應(yīng)選B。
12.C
13.C本題考查了萊布尼茨公式的知識(shí)點(diǎn).
由萊布尼茨公式,得(exsinx)'''=(ex)'''sinx+3(ex)''(sinx)'+3(ex)'(sinx)''+ex(sinx)'''=exsinx+3excosx+3ex(-sinx)+ex(-cosx)=2ex(cosx-sinx).
14.D
15.C
16.A
17.D①∵f(0)=0,f-(0)=0,f+(0)=0;∴f(x)在x=0處連續(xù);∵f-"(0)≠f"(0)∴f(x)在x=0處不可導(dǎo)。
18.B由微分基本公式及四則運(yùn)算法則可求得.也可以利用dy=y′dx求得故選B.
19.C解析:
20.C解析:
21.本題考查的知識(shí)點(diǎn)為定積分的換元法.
22.>1
23.
24.
25.y=f(0)
26.|x|
27.
28.29.y=-e-x+C本題考查的知識(shí)點(diǎn)為可分離變量方程的求解.
可分離變量方程求解的一般方法為:
(1)變量分離;
(2)兩端積分.
由于方程為exy'=1,先變形為
變量分離dy=e-xdx.
兩端積分
為所求通解.30.因?yàn)榧?jí)數(shù)為,所以用比值判別法有當(dāng)<1時(shí)收斂,即x2<2。收斂區(qū)間為,故收斂半徑R=。
31.
32.r2+8r=0本題考查的知識(shí)點(diǎn)為二階常系數(shù)線性微分方程特征方程的概念。y"+8y"=0的特征方程為r2+8r=0。
33.
34.x+2y-z-2=0
35.
36.x/1=y/2=z/-1
37.
本題考查的知識(shí)點(diǎn)為可分離變量方程的求解.
可分離變量方程求解的一般方法為:
(1)變量分離;
(2)兩端積分.
38.
39.-4cos2x
40.41.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
42.
43.
44.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
45.
46.47.由一階線性微分方程通解公式有
48.
49.
50.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
51.
列表:
說(shuō)明
52.由等價(jià)無(wú)窮小量的定義可知
53.
54.函數(shù)的定義域?yàn)?/p>
注意
55.
則
56.57.由二重積分物理意義知
58.
59.
60.
61.62.利用極坐標(biāo),區(qū)域D可以表示為0≤θ≤π,0≤r≤2本題考查的知識(shí)點(diǎn)為二重積分的計(jì)算(極坐標(biāo)系).
如果積分區(qū)域?yàn)閳A域或圓的一部分,被積函數(shù)為f(x2+y2)的二重積分,通常利用極坐標(biāo)計(jì)算較方便.
使用極坐標(biāo)計(jì)算二重積分時(shí),要先將區(qū)域D的邊界曲線化為極坐標(biāo)下的方程表示,以確定出區(qū)域D的不等式表示式,再將積分化為二次積分.
本題考生中常見(jiàn)的錯(cuò)誤為:
被積函數(shù)中丟掉了r.這是將直角坐標(biāo)系下的二重積分化為極坐標(biāo)下的二次積分時(shí)常見(jiàn)的
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- BIM工程師-全國(guó)《BIM應(yīng)用技能資格》模擬試卷4
- 人教版新課標(biāo)高中英語(yǔ)必修2全套教案
- 高一化學(xué)教案:專題第三單元第一課時(shí)同素異形現(xiàn)象、同分異構(gòu)現(xiàn)象
- 2024屆重慶某中學(xué)高考化學(xué)三模試卷含解析
- 2024高中化學(xué)第二章烴和鹵代烴1-1烷烴和烯烴課時(shí)作業(yè)含解析新人教版選修5
- 2024高中物理章末質(zhì)量評(píng)估四含解析粵教版選修1-1
- 2024高中生物第五章生態(tài)系統(tǒng)及其穩(wěn)定性第4節(jié)生態(tài)系統(tǒng)的信息傳遞精練含解析新人教版必修3
- 2024高中語(yǔ)文第二課千言萬(wàn)語(yǔ)總關(guān)“音”第2節(jié)耳聽(tīng)為虛-同音字和同音詞訓(xùn)練含解析新人教版選修語(yǔ)言文字應(yīng)用
- 2024高考化學(xué)一輪復(fù)習(xí)第四章第3課時(shí)碳硅及其化合物教案魯科版
- 2024高考?xì)v史一輪復(fù)習(xí)方案專題八中國(guó)社會(huì)主義建設(shè)道路的探索專題綜合測(cè)驗(yàn)含解析人民版
- 2025年湖北武漢工程大學(xué)招聘6人歷年高頻重點(diǎn)提升(共500題)附帶答案詳解
- 【數(shù) 學(xué)】2024-2025學(xué)年北師大版數(shù)學(xué)七年級(jí)上冊(cè)期末能力提升卷
- GB/T 26846-2024電動(dòng)自行車用電動(dòng)機(jī)和控制器的引出線及接插件
- 遼寧省沈陽(yáng)市皇姑區(qū)2024-2025學(xué)年九年級(jí)上學(xué)期期末考試語(yǔ)文試題(含答案)
- 妊娠咳嗽的臨床特征
- 2024年金融理財(cái)-擔(dān)保公司考試近5年真題附答案
- 泰山產(chǎn)業(yè)領(lǐng)軍人才申報(bào)書(shū)
- 高中語(yǔ)文古代文學(xué)課件:先秦文學(xué)
- 人教版五年級(jí)上冊(cè)遞等式計(jì)算100道及答案
- 六年級(jí)-上學(xué)期-心理健康教育教案
- 行車組織題庫(kù)(199道)
評(píng)論
0/150
提交評(píng)論