




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年遼寧省阜新市成考專(zhuān)升本高等數(shù)學(xué)一自考模擬考試(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(50題)1.若函數(shù)f(x)=5x,則f'(x)=
A.5x-1
B.x5x-1
C.5xln5
D.5x
2.
3.
4.A.
B.0
C.ln2
D.-ln2
5.
6.f(x)在[a,b]上連續(xù)是f(x)在[a,b]上有界的()條件。A.充分B.必要C.充要D.非充分也非必要7.設(shè)y1,y2為二階線性常系數(shù)微分方程y"+p1y+p2y=0的兩個(gè)特解,則C1y1+C2y2()A.為所給方程的解,但不是通解B.為所給方程的解,但不一定是通解C.為所給方程的通解D.不為所給方程的解
8.
9.
10.二次積分等于()A.A.
B.
C.
D.
11.
12.A.A.2B.1C.0D.-113.設(shè)f'(x)為連續(xù)函數(shù),則等于()A.A.
B.
C.
D.
14.鋼筋混凝土軸心受拉構(gòu)件正截面承載力計(jì)算時(shí),用以考慮縱向彎曲彎曲影響的系數(shù)是()。
A.偏心距增大系數(shù)B.可靠度調(diào)整系數(shù)C.結(jié)構(gòu)重要性系數(shù)D.穩(wěn)定系數(shù)15.設(shè)函數(shù)f(x)=(x-1)(x-2)(x-3),則方程f(x)=0有()。A.一個(gè)實(shí)根B.兩個(gè)實(shí)根C.三個(gè)實(shí)根D.無(wú)實(shí)根16.A.A.
B.
C.
D.
17.A.A.1B.2C.3D.4
18.
19.
20.設(shè)函數(shù)f(x)在[0,b]連續(xù),在(a,b)可導(dǎo),f′(x)>0.若f(a)·f(b)<0,則y=f(x)在(a,b)().
A.不存在零點(diǎn)
B.存在唯一零點(diǎn)
C.存在極大值點(diǎn)
D.存在極小值點(diǎn)
21.A.A.-(1/2)B.1/2C.-1D.222.A.0B.1/2C.1D.223.A.A.0
B.
C.
D.∞
24.
25.圖示懸臂梁,若已知截面B的撓度和轉(zhuǎn)角分別為vB和θB,則C端撓度為()。
A.vC=2uB
B.uC=θBα
C.vC=uB+θBα
D.vC=vB
26.設(shè)y=f(x)在(a,b)內(nèi)有二階導(dǎo)數(shù),且f"<0,則曲線y=f(x)在(a,b)內(nèi)().A.A.凹B.凸C.凹凸性不可確定D.單調(diào)減少27.()。A.
B.
C.
D.
28.設(shè)y=2-x,則y'等于()。A.2-xx
B.-2-x
C.2-xln2
D.-2-xln2
29.設(shè)z=tan(xy),則等于()A.A.
B.
C.
D.
30.
31.設(shè)y=2x,則dy=A.A.x2x-1dx
B.2xdx
C.(2x/ln2)dx
D.2xln2dx
32.
33.()工作是對(duì)決策工作在時(shí)間和空間兩個(gè)緯度上進(jìn)一步的展開(kāi)和細(xì)化。
A.計(jì)劃B.組織C.控制D.領(lǐng)導(dǎo)
34.
35.已知作用在簡(jiǎn)支梁上的力F與力偶矩M=Fl,不計(jì)桿件自重和接觸處摩擦,則以下關(guān)于固定鉸鏈支座A的約束反力表述正確的是()。
A.圖(a)與圖(b)相同B.圖(b)與圖(c)相同C.三者都相同D.三者都不相同36.A.A.5B.3C.-3D.-5
37.
38.設(shè)a={-1,1,2),b={3,0,4},則向量a在向量b上的投影為()A.A.
B.1
C.
D.-1
39.微分方程y+y=0的通解為().A.A.
B.
C.
D.
40.A.6YB.6XYC.3XD.3X^2
41.在下列函數(shù)中,在指定區(qū)間為有界的是()。
A.f(x)=22z∈(一∞,0)
B.f(x)=lnxz∈(0,1)
C.
D.f(x)=x2x∈(0,+∞)
42.()。A.為無(wú)窮小B.為無(wú)窮大C.不存在,也不是無(wú)窮大D.為不定型43.等于().A.A.0
B.
C.
D.∞
44.
45.A.0B.1C.2D.不存在46.()。A.
B.
C.
D.
47.
48.設(shè)函數(shù)f(x)在區(qū)間(0,1)內(nèi)可導(dǎo)f(x)>0,則在(0,1)內(nèi)f(x)().
A.單調(diào)增加B.單調(diào)減少C.為常量D.既非單調(diào),也非常量
49.政策指導(dǎo)矩陣是根據(jù)()將經(jīng)營(yíng)單值進(jìn)行分類(lèi)的。
A.業(yè)務(wù)增長(zhǎng)率和相對(duì)競(jìng)爭(zhēng)地位
B.業(yè)務(wù)增長(zhǎng)率和行業(yè)市場(chǎng)前景
C.經(jīng)營(yíng)單位的競(jìng)爭(zhēng)能力與相對(duì)競(jìng)爭(zhēng)地位
D.經(jīng)營(yíng)單位的競(jìng)爭(zhēng)能力與市場(chǎng)前景吸引力
50.A.充分條件B.必要條件C.充要條件D.以上都不對(duì)二、填空題(20題)51.
52.冪級(jí)數(shù)的收斂半徑為_(kāi)_______。
53.
54.
55.56.
57.
58.
59.
60.
61.62.
63.64.
65.
66.
67.68.過(guò)點(diǎn)(1,-1,0)且與直線平行的直線方程為_(kāi)_____。69.
70.
三、計(jì)算題(20題)71.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.72.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).
73.
74.求微分方程y"-4y'+4y=e-2x的通解.
75.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.76.77.78.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.79.證明:80.求曲線在點(diǎn)(1,3)處的切線方程.81.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則82.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.83.
84.
85.86.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫(xiě)出S(x)的表達(dá)式;
(2)求S(x)的最大值.
87.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
88.
89.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).90.求微分方程的通解.四、解答題(10題)91.
92.
93.計(jì)算
94.
95.
96.
97.
98.
99.
100.
五、高等數(shù)學(xué)(0題)101.f(x)=lnx,則f[f(x)]=__________。六、解答題(0題)102.
參考答案
1.C本題考查了導(dǎo)數(shù)的基本公式的知識(shí)點(diǎn)。f'(x)=(5x)'=5xln5.
2.C解析:
3.D
4.A為初等函數(shù),定義區(qū)間為,點(diǎn)x=1在該定義區(qū)間內(nèi),因此
故選A.
5.B
6.A定理:閉區(qū)間上的連續(xù)函數(shù)必有界;反之不一定。
7.B如果y1,y2這兩個(gè)特解是線性無(wú)關(guān)的,即≠C,則C1y1+C2y2是其方程的通解?,F(xiàn)在題設(shè)中沒(méi)有指出是否線性無(wú)關(guān),所以可能是通解,也可能不是通解,故選B。
8.A
9.A
10.A本題考查的知識(shí)點(diǎn)為交換二次積分的積分次序.
由所給二次積分限可知積分區(qū)域D的不等式表達(dá)式為:
0≤x≤1,0≤y≤1-x,
其圖形如圖1-1所示.
交換積分次序,D可以表示為
0≤y≤1,0≤x≤1-y,
因此
可知應(yīng)選A.
11.B
12.C
13.C本題考查的知識(shí)點(diǎn)為牛-萊公式和不定積分的性質(zhì).
可知應(yīng)選C.
14.D
15.B
16.A
17.A
18.B
19.A
20.B由于f(x)在[a,b]上連續(xù)f(z)·fb)<0,由閉區(qū)間上連續(xù)函數(shù)的零點(diǎn)定理可知,y=f(x)在(a,b)內(nèi)至少存在一個(gè)零點(diǎn).又由于f(x)>0,可知f(x)在(a,b)內(nèi)單調(diào)增加,因此f(x)在(a,b)內(nèi)如果有零點(diǎn),則至多存在一個(gè).
綜合上述f(x)在(a,b)內(nèi)存在唯一零點(diǎn),故選B.
21.A
22.D本題考查了二元函數(shù)的偏導(dǎo)數(shù)的知識(shí)點(diǎn)。
23.A本題考查的知識(shí)點(diǎn)為“有界變量與無(wú)窮小量的乘積為無(wú)窮小量”的性質(zhì).這表明計(jì)算時(shí)應(yīng)該注意問(wèn)題中的所給條件.
24.C解析:
25.C
26.A本題考查的知識(shí)點(diǎn)為利用二階導(dǎo)數(shù)符號(hào)判定曲線的凹凸性.
由于在(a,b)區(qū)間內(nèi)f"(x)<0,可知曲線y=f(x)在(a,b)內(nèi)為凹的,因此選A.
27.D
28.D本題考查的知識(shí)點(diǎn)為復(fù)合函數(shù)求導(dǎo)數(shù)的鏈?zhǔn)椒▌t。由于y=2-xY'=2-x·ln2·(-x)'=-2-xln2.考生易錯(cuò)誤選C,這是求復(fù)合函數(shù)的導(dǎo)數(shù)時(shí)丟掉項(xiàng)而造成的!因此考生應(yīng)熟記:若y=f(u),u=u(x),則
不要丟項(xiàng)。
29.B本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)運(yùn)算.
由于z=tan(xy),因此
可知應(yīng)選A.
30.A解析:
31.Dy=2x,y'=2xln2,dy=y'dx=2xln2dx,故選D。
32.A
33.A解析:計(jì)劃工作是對(duì)決策工作在時(shí)間和空間兩個(gè)緯度上進(jìn)一步的展開(kāi)和細(xì)分。
34.D
35.D
36.Cf(x)為分式,當(dāng)x=-3時(shí),分式的分母為零,f(x)沒(méi)有定義,因此
x=-3為f(x)的間斷點(diǎn),故選C。
37.D解析:
38.B
39.D本題考查的知識(shí)點(diǎn)為-階微分方程的求解.
可以將方程認(rèn)作可分離變量方程;也可以將方程認(rèn)作-階線性微分方程;還可以仿二階線性常系數(shù)齊次微分方程,并作為特例求解.
解法1將方程認(rèn)作可分離變量方程.
解法2將方程認(rèn)作-階線性微分方程.由通解公式可得
解法3認(rèn)作二階常系數(shù)線性齊次微分方程特例求解:
特征方程為r+1=0,
特征根為r=-1,
40.D
41.A∵0<2x<1x∈(一∞,0)∴f(x)=2x在區(qū)間(一∞,0)內(nèi)為有界函數(shù)。
42.D
43.A
44.A
45.D本題考查的知識(shí)點(diǎn)為極限與左極限、右極限的關(guān)系.
由于f(x)為分段函數(shù),點(diǎn)x=1為f(x)的分段點(diǎn),且在x=1的兩側(cè),f(x)的表達(dá)式不相同,因此應(yīng)考慮左極限與右極限.
46.C由不定積分基本公式可知
47.C
48.A本題考查的知識(shí)點(diǎn)為利用導(dǎo)數(shù)符號(hào)判定函數(shù)的單調(diào)性.
由于f(x)在(0,1)內(nèi)有f(x)>0,可知f(x)在(0,1)內(nèi)單調(diào)增加,故應(yīng)選A.
49.D解析:政策指導(dǎo)矩陣根據(jù)對(duì)市場(chǎng)前景吸引力和經(jīng)營(yíng)單位的相對(duì)競(jìng)爭(zhēng)能力的劃分,可把企業(yè)的經(jīng)營(yíng)單位分成九大類(lèi)。
50.D極限是否存在與函數(shù)在該點(diǎn)有無(wú)定義無(wú)關(guān).
51.x2+y2=Cx2+y2=C解析:52.因?yàn)榧?jí)數(shù)為,所以用比值判別法有當(dāng)<1時(shí)收斂,即x2<2。收斂區(qū)間為,故收斂半徑R=。
53.1/e1/e解析:
54.y=f(0)55.本題考查的知識(shí)點(diǎn)為無(wú)窮小的性質(zhì)。
56.
57.2cos(x2+y2)(xdx+ydy)2cos(x2+y2)(xdx+ydy)解析:58.5.
本題考查的知識(shí)點(diǎn)為二元函數(shù)的偏導(dǎo)數(shù).
解法1
解法2
59.
60.ex261.e;本題考查的知識(shí)點(diǎn)為極限的運(yùn)算.
注意:可以變形,化為形式的極限.但所給極限通??梢韵茸冃危?/p>
62.答案:1
63.
64.x--arctanx+C本題考查了不定積分的知識(shí)點(diǎn)。
65.
66.67.6.
本題考查的知識(shí)點(diǎn)為無(wú)窮小量階的比較.
68.本題考查的知識(shí)點(diǎn)為直線的方程和直線與直線的關(guān)系。由于兩條直線平行的充分必要條件為它們的方向向量平行,因此可取所求直線的方向向量為(2,1,-1).由直線的點(diǎn)向式方程可知所求直線方程為
69.
70.
71.
72.
列表:
說(shuō)明
73.
74.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
75.
76.
77.78.函數(shù)的定義域?yàn)?/p>
注意
79.
80.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
81.由等價(jià)無(wú)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度企業(yè)年會(huì)短視頻拍攝制作合同
- 二零二五年度戶外廣告發(fā)布合作合同
- 二零二五年度草原雇傭放羊與生態(tài)補(bǔ)償協(xié)議
- 二零二五年度資質(zhì)借用及資源共享協(xié)議
- 2025年度施工安全協(xié)議個(gè)人責(zé)任履行細(xì)則
- 二零二五年度房地產(chǎn)項(xiàng)目銷(xiāo)售代理與節(jié)能環(huán)保技術(shù)合作合同
- 二零二五年度休閑度假村包租合作合同
- 二零二五年度醫(yī)療行業(yè)勞動(dòng)合同管理規(guī)范與醫(yī)護(hù)人員保障措施
- 掛靠證件合同模板(2025年度)適用于文化創(chuàng)意產(chǎn)業(yè)
- 二零二五年度電子商務(wù)借款居間服務(wù)合同協(xié)議
- 社會(huì)救助公共基礎(chǔ)知識(shí)題庫(kù)及答案
- 《論文所用框架圖》課件
- 人教版三年級(jí)下冊(cè)說(shuō)課標(biāo)、說(shuō)教材
- 2022版《義務(wù)教育科學(xué)課程標(biāo)準(zhǔn)》試題及答案
- 《民法典》背景下違約精神損害賠償制度適用問(wèn)題
- 松下機(jī)器人操作手冊(cè)
- 數(shù)字電路邏輯設(shè)計(jì)(第3版)PPT全套完整教學(xué)課件
- 境外道路貨物運(yùn)輸應(yīng)急預(yù)案
- 管理學(xué)-北京師范大學(xué)中國(guó)大學(xué)mooc課后章節(jié)答案期末考試題庫(kù)2023年
- 2023年司法鑒定程序通則
- 網(wǎng)店運(yùn)營(yíng)PPT全套完整教學(xué)課件
評(píng)論
0/150
提交評(píng)論