版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每題4分,共48分)1.已知⊙O的半徑是4,OP=5,則點P與⊙O的位置關(guān)系是()A.點P在圓上 B.點P在圓內(nèi) C.點P在圓外 D.不能確定2.四條線段a,b,c,d成比例,其中b=3cm,c=8cm,d=12cm,則a=()A.2cm B.4cm C.6cm D.8cm3.將拋物線y=x2﹣2向上平移1個單位后所得新拋物線的表達式為()A.y=﹣1 B.y=﹣3 C.y=﹣2 D.y=﹣24.已知拋物線y=x2+(2a+1)x+a2﹣a,則拋物線的頂點不可能在()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.下面是投影屏上出示的搶答題,需要回答橫線上符號代表的內(nèi)容.如圖,已知與相切于點,點在上.求證:.證明:連接并延長,交于點,連接.∵與相切于點,∴,∴.∵@是的直徑,∴(直徑所對的圓周角是90°),∴,∴◎.∵,∴▲(同弧所對的※相等),∴.下列選項中,回答正確的是()A.@代表 B.◎代表 C.▲代表 D.※代表圓心角6.如圖,中,,若,,則邊的長是()A.2 B.4 C.6 D.87.如圖,已知△ABC中,∠C=90°,AC=BC=,將△ABC繞點A順時針方向旋轉(zhuǎn)60°得到△A′B′C′的位置,連接C′B,則C′B的長為()A.2- B. C. D.18.下列數(shù)是無理數(shù)的是()A. B. C. D.9.下列說法:①概率為0的事件不一定是不可能事件;②試驗次數(shù)越多,某情況發(fā)生的頻率越接近概率;③事件發(fā)生的概率與實驗次數(shù)無關(guān);④在拋擲圖釘?shù)脑囼炛嗅樇獬系母怕蕿椋硎?次這樣的試驗必有1次針尖朝上.其中正確的是()A.①② B.②③ C.①③ D.①④10.下列事件中是隨機事件的是()A.校運會上立定跳遠成績?yōu)?0米B.在只裝有5個紅球的袋中,摸出一個紅球C.慈溪市明年五一節(jié)是晴天D.在標準大氣壓下,氣溫3°C時,冰熔化為水11.生物興趣小組的學生,將自己收集的標本向本組其他成員各贈送一件,全組共互增了182件.如果全組共有x名同學,則根據(jù)題意列出的方程是().A.x(x+1)=182 B.x(x+1)=182×C.x(x-1)=182 D.x(x-1)=182×212.如圖,反比例函數(shù)y=的圖象與一次函數(shù)y=kx+b的圖象相交于點A,B,已知點A的坐標為(-2,1),點B的縱坐標為-2,根據(jù)圖象信息可得關(guān)于x的方程=kx+b的解為()A.-2,1 B.1,1 C.-2,-2 D.無法確定二、填空題(每題4分,共24分)13.在一個不透明的口袋中,裝有一些除顏色外完全相同的紅、白、黑三種顏色的小球.己知袋中有紅球5個,白球23個,且從袋中隨機摸出一個紅球的概率是,則袋中黑球的個數(shù)為__________.14.把配方成的形式為__________.15.如圖,⊙O是△ABC的外接圓,AD是⊙O的直徑,若⊙O的半徑是4,sinB=,則線段AC的長為.16.如圖,在平面直角坐標系中,已知點A(1,0),B(1﹣a,0),C(1+a,0)(a>0),點P在以D(4,4)為圓心,1為半徑的圓上運動,且始終滿足∠BPC=90°,則a的最大值是______.17.如圖,C、D是AB為直徑的半圓O上的點,若∠BAD=50°,則∠BCD=_____.18.把拋物線的頂點E先向左平移3個單位,再向上平移4個單位后剛好落在同一平面直角坐標系的雙曲線上,那么=__________三、解答題(共78分)19.(8分)如圖,點F為正方形ABCD內(nèi)一點,△BFC繞點B逆時針旋轉(zhuǎn)后與△BEA重合(1)求△BEF的形狀(2)若∠BFC=90°,說明AE∥BF20.(8分)在一個不透明的盒子中裝有4張卡片.4張卡片的正面分別標有數(shù)字1,2,3,4,這些卡片除數(shù)字外都相同,將卡片攪勻.(1)從盒子任意抽取一張卡片,恰好抽到標有奇數(shù)卡片的概率是:;(2)先從盒子中任意抽取一張卡片,再從余下的3張卡片中任意抽取一張卡片,求抽取的2張卡片標有數(shù)字之和大于4的概率(請用畫樹狀圖或列表等方法求解).21.(8分)計算:(1)sin260°﹣tan30°?cos30°+tan45°(2)cos245°+sin245°+sin254°+cos254°22.(10分)某課桌生產(chǎn)廠家研究發(fā)現(xiàn),傾斜12°至24°的桌面有利于學生保持軀體自然姿勢.根據(jù)這一研究,廠家決定將水平桌面做成可調(diào)節(jié)角度得桌面.新桌面的設計圖如圖1,可繞點旋轉(zhuǎn),在點處安裝一根長度一定且處固定,可旋轉(zhuǎn)的支撐臂,.(1)如圖2,當時,,求支撐臂的長;(2)如圖3,當時,求的長.(結(jié)果保留根號)(參考數(shù)據(jù):,,,)23.(10分)如果三角形有一邊上的中線恰好等于這邊的長,那么稱這個三角形為“勻稱三角形”,這條中線為“勻稱中線”.(1)如圖①,在Rt△ABC中,∠C=90°,AC>BC,若Rt△ABC是“勻稱三角形”.①請判斷“勻稱中線”是哪條邊上的中線,②求BC:AC:AB的值.(2)如圖②,△ABC是⊙O的內(nèi)接三角形,AB>AC,∠BAC=45°,S△ABC=2,將△ABC繞點A逆時針旋轉(zhuǎn)45°得到△ADE,點B的對應點為D,AD與⊙O交于點M,若△ACD是“勻稱三角形”,求CD的長,并判斷CM是否為△ACD的“勻稱中線”.24.(10分)2019年11月26日,魯南高鐵正式開通運營.魯南高鐵臨沂段修建過程中需要經(jīng)過一座小山.如圖,施工方計劃沿AC方向挖隧道,為了加快施工速度,要在小山的另一側(cè)D(A、C、D共線)處同時施工.測得∠CAB=30°,,∠ABD=105°,求AD的長.25.(12分)八年級一班開展了“讀一本好書”的活動,班委會對學生閱讀書籍的情況進行了問卷調(diào)查,問卷設置了“小說”“戲劇”“散文”“其他”四個類型,每位同學僅選一項,根據(jù)調(diào)查結(jié)果繪制了不完整的頻數(shù)分布表和扇形統(tǒng)計圖.類別頻數(shù)(人數(shù))頻率小說0.5戲劇4散文100.25其他6合計1根據(jù)圖表提供的信息,解答下列問題:(1)八年級一班有多少名學生?(2)請補全頻數(shù)分布表,并求出扇形統(tǒng)計圖中“其他”類所占的百分比;(3)在調(diào)查問卷中,甲、乙、丙、丁四位同學選擇了“戲劇”類,現(xiàn)從以上四位同學中任意選出2名同學參加學校的戲劇興趣小組,請用畫樹狀圖或列表法的方法,求選取的2人恰好是乙和丙的概率.26.已知:如圖,C,D是以AB為直徑的⊙O上的兩點,且OD∥BC.求證:AD=DC.
參考答案一、選擇題(每題4分,共48分)1、C【分析】根據(jù)“點到圓心的距離大于半徑,則點在圓外”即可解答.【詳解】解:∵⊙O的半徑是4,OP=5,5>4即點到圓心的距離大于半徑,∴點P在圓外,故答案選C.【點睛】本題考查了點與圓的位置關(guān)系,通過比較點到圓心的距離與半徑的大小確定點與圓的位置關(guān)系.2、A【解析】由四條線段a、b、c、d成比例,根據(jù)比例線段的定義,即可得,又由b=3cm,c=8cm,d=12cm,即可求得a的值.【詳解】∵四條線段a、b、c、d成比例,∴∵b=3cm,c=8cm,d=12cm,
∴
解得:a=2cm.
故答案為A.【點睛】此題考查了比例線段的定義.解題的關(guān)鍵是熟記比例線段的概念.3、A【分析】根據(jù)“上加下減,左加右減”的原則進行解答即可.【詳解】解:將拋物線y=x2﹣2向上平移1個單位后所得新拋物線的表達式為y=x2﹣2+1,即y=x2﹣1.故選:A.【點睛】本題考查的是二次函數(shù)的圖象與幾何變換,熟知“上加下減,左加右減”的原則是解答此題的關(guān)鍵.4、D【分析】求得頂點坐標,得出頂點的橫坐標和縱坐標的關(guān)系式,即可求得.【詳解】拋物線y=x2+(2a+1)x+a2﹣a的頂點的橫坐標為:x=﹣=﹣a﹣,縱坐標為:y==﹣2a﹣,∴拋物線的頂點橫坐標和縱坐標的關(guān)系式為:y=2x+,∴拋物線的頂點經(jīng)過一二三象限,不經(jīng)過第四象限,故選:D.【點睛】本題考查了二次函數(shù)的性質(zhì),得到頂點的橫縱坐標的關(guān)系式是解題的關(guān)鍵.5、B【分析】根據(jù)圓周角定理和切線的性質(zhì)以及余角的性質(zhì)判定即可.【詳解】解:由證明過程可知:A:@代表AE,故選項錯誤;B:由同角的余角相等可知:◎代表,故選項正確;C和D:由同弧所對的圓周角相等可得▲代表∠E,※代表圓周角,故選項錯誤;故選B.【點睛】本題考查了切線的性質(zhì),圓周角定理,余角的性質(zhì)等知識點,熟記知識點是解題的關(guān)鍵.6、C【分析】由,∠A=∠A,得?ABD~?ACB,進而得,求出AC的值,即可求解.【詳解】∵,∠A=∠A,∴?ABD~?ACB,∴,即:,∴AC=8,∴CD=AC-AD=8-2=6,故選C.【點睛】本題主要考查相似三角形的判定和性質(zhì)定理,掌握相似三角形的判定定理,是解題的關(guān)鍵.7、C【分析】如圖,連接BB′,延長BC′交AB′于點D,證明△ABC′≌△B′BC′,得到∠DBB′=∠DBA=30°;求出BD、C′D的長,即可解決問題.【詳解】解:如圖,連接BB′,延長BC′交AB′于點D,
由題意得:∠BAB′=60°,BA=B′A,
∴△ABB′為等邊三角形,
∴∠ABB′=60°,AB=B′B;
在△ABC′與△B′BC′中,∴△ABC′≌△B′BC′(SSS),
∴∠DBB′=∠DBA=30°,
∴BD⊥AB′,且AD=B′D,∵AC=BC=,∴,∴,,,.故選:C.【點睛】本題考查旋轉(zhuǎn)的性質(zhì),全等三角形的性質(zhì)和判定,等邊三角形的判定與性質(zhì),等腰直角三角形的性質(zhì),直角三角形斜邊上的中線.作輔助線構(gòu)造出全等三角形并求出BC′在等邊三角形的高上是解題的關(guān)鍵,也是本題的難點.8、C【分析】根據(jù)無理數(shù)的定義進行判斷即可.【詳解】A.,有理數(shù);B.,有理數(shù);C.,無理數(shù);D.,有理數(shù);故答案為:C.【點睛】本題考查了無理數(shù)的問題,掌握無理數(shù)的定義是解題的關(guān)鍵.9、B【分析】根據(jù)概率和頻率的概念對各選項逐一分析即可.【詳解】①概率為0的事件是不可能事件,①錯誤;②試驗次數(shù)越多,某情況發(fā)生的頻率越接近概率,故②正確;③事件發(fā)生的概率是客觀存在的,是確定的數(shù)值,故③正確;④根據(jù)概率的概念,④錯誤.故選:B【點睛】本題考查概率的意義,考查頻率與概率的關(guān)系,本題是一個概念辨析問題.10、C【分析】根據(jù)隨機事件的定義,就是可能發(fā)生也可能不發(fā)生的事件進行判斷即可.【詳解】解:A.“校運會上立定跳遠成績?yōu)?0米”是不可能事件,因此選項A不符合題意;B.“在只裝有5個紅球的袋中,摸出一個紅球”是必然事件,因此選項B不符合題意;C.“慈溪市明年五一節(jié)是晴天”可能發(fā)生,也可能不發(fā)生,是隨機事件,因此選項C符合題意;D.“在標準大氣壓下,氣溫3°C時,冰熔化為水”是必然事件,因此選項D不符合題意;故選:C.【點睛】本題考查了隨機事件、必然事件、不可能事件的定義,理解隨機事件的定義是解題的關(guān)鍵.11、C【解析】試題分析:先求每名同學贈的標本,再求x名同學贈的標本,而已知全組共互贈了182件,故根據(jù)等量關(guān)系可得到方程.每名同學所贈的標本為:(x-1)件,那么x名同學共贈:x(x-1)件,根據(jù)題意可列方程:x(x-1)=182,故選C.考點:本題考查的是根據(jù)實際問題列一元二次方程點評:找到關(guān)鍵描述語,找到等量關(guān)系,然后準確的列出方程是解答本題的關(guān)鍵.12、A【分析】所求方程的解即為兩個交點A、B的橫坐標,由于點A的橫坐標已知,故只需求出點B的橫坐標即可,亦即求出反比例函數(shù)的解析式即可,由于點A坐標已知,故反比例函數(shù)的解析式可求,問題得解.【詳解】解:把點A(﹣1,1)代入,得m=﹣1,∴反比例函數(shù)的解析式是,當y=﹣1時,x=1,∴B的坐標是(1,﹣1),∴方程=kx+b的解是x1=1,x1=﹣1.故選:A.【點睛】本題考查了求直線與雙曲線的交點和待定系數(shù)法求反比例函數(shù)的解析式,屬于??碱}型,明確兩個函數(shù)交點的橫坐標是對應方程的解是關(guān)鍵.二、填空題(每題4分,共24分)13、1【分析】袋中黑球的個數(shù)為,利用概率公式得到,然后利用比例性質(zhì)求出即可.【詳解】解:設袋中黑球的個數(shù)為,根據(jù)題意得,解得,即袋中黑球的個數(shù)為個.故答案為:1.【點睛】本題主要考查概率的計算問題,關(guān)鍵在于根據(jù)題意對概率公式的應用.14、【分析】對二次函數(shù)進行配方,即可得到答案.【詳解】===.故答案是:.【點睛】本題主要考查二次函數(shù)的頂點式,掌握二次函數(shù)的配方,是解題的關(guān)鍵.15、1.【分析】連結(jié)CD如圖,根據(jù)圓周角定理得到∠ACD=90°,∠D=∠B,則sinD=sinB=,然后在Rt△ACD中利用∠D的正弦可計算出AC的長.【詳解】解:連結(jié)CD,如圖,∵AD是⊙O的直徑,∴∠ACD=90°,∵∠D=∠B,∴sinD=sinB=,在Rt△ACD中,∵sinD==,∴AC=AD=×8=1.故答案為1.【點睛】本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.推論:半圓(或直徑)所對的圓周角是直角,90°的圓周角所對的弦是直徑.也考查了解直角三角形.16、1【分析】首先證明AB=AC=a,根據(jù)條件可知PA=AB=AC=a,求出⊙D上到點A的最大距離即可解決問題.【詳解】∵A(1,0),B(1﹣a,0),C(1+a,0)(a>0),∴AB=1﹣(1﹣a)=a,CA=a+1﹣1=a,∴AB=AC,∵∠BPC=90°,∴PA=AB=AC=a,如圖延長AD交⊙D于P′,此時AP′最大,∵A(1,0),D(4,4),∴AD=5,∴AP′=5+1=1,∴a的最大值為1.故答案為1.【點睛】圓外一點到圓上一點的距離最大值為點到圓心的距離加半徑,最小值為點到圓心的距離減去半徑.17、130°【分析】根據(jù)圓周角定理和圓內(nèi)接四邊形的性質(zhì)得出∠BAD+∠BCD=180°,代入求出即可.【詳解】∵C、D是AB為直徑的半圓O上的點,∴∠BAD+∠BCD=180°.∵∠BAD=50°,∴∠BCD=130°.故答案為:130°.【點睛】本題考查了圓周角定理和圓內(nèi)接四邊形的性質(zhì),能根據(jù)圓內(nèi)接四邊形的性質(zhì)得出∠BAD+∠BCD=180°是解答本題的關(guān)鍵.18、﹣1【分析】根據(jù)題意得出頂點E坐標,利用平移的規(guī)律得出移動后的點的坐標,進而代入反比例函數(shù)即可求出k的值.【詳解】解:由題意可知拋物線的頂點E坐標為(1,-2),把點E(1,-2)先向左平移3個單位,再向上平移1個單位所得對應點的坐標為(-2,2),∵點(-2,2)在雙曲線上,∴k=-2×2=-1.故答案為:-1.【點睛】本題考查二次函數(shù)圖象與幾何變換和二次函數(shù)的性質(zhì)以及待定系數(shù)法求反比例函數(shù)的解析式,根據(jù)題意求得平移后的頂點坐標是解題的關(guān)鍵.三、解答題(共78分)19、(1)等腰直角三角形(2)見解析【分析】(1)利用正方形的性質(zhì)得BA=BC,∠ABC=90°,然后根據(jù)旋轉(zhuǎn)的定義可判斷旋轉(zhuǎn)中心為點B,旋轉(zhuǎn)角為90°,根據(jù)旋轉(zhuǎn)的性質(zhì)得∠EBF=∠ABC=90°,BE=BF,則可判斷△BEF為等腰直角三角形;(2)根據(jù)旋轉(zhuǎn)的性質(zhì)得∠BEA=∠BFC=90°,從而根據(jù)平行線的判定方法可判斷AE∥BF.【詳解】(1)△BEF為等腰直角三角形,理由如下:∵四邊形ABCD為正方形,∴BA=BC,∠ABC=90°,∵△BFC逆時針旋轉(zhuǎn)后能與△BEA重合,∴旋轉(zhuǎn)中心為點B,∠CBA為旋轉(zhuǎn)角,即旋轉(zhuǎn)角為90°;∵△BFC逆時針旋轉(zhuǎn)后能與△BEA重合,∴∠EBF=∠ABC=90°,BE=BF,∴△BEF為等腰直角三角形;(2)∵△BFC逆時針旋轉(zhuǎn)后能與△BEA重合,∴∠BEA=∠BFC=90°,∴∠BEA+∠EBF=180°,∴AE∥BF.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì):對應點到旋轉(zhuǎn)中心的距離相等;對應點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.也考查了正方形的性質(zhì).20、(1);(2).【解析】(1)共4張卡片,奇數(shù)卡片有2張,利用概率公式直接進行計算即可;(2)畫出表格,數(shù)出總情況數(shù),數(shù)出抽取的2張卡片標有數(shù)字之和大于4的情況數(shù),再利用概率公式進行計算即可【詳解】(1)共4張卡片,奇數(shù)卡片有2張,所以恰好抽到標有奇數(shù)卡片的概率是(2)表格如下一共有12種情況,其中2張卡片標有數(shù)字之和大于4的有8種情況,所以答:從盒子任意抽取一張卡片,恰好抽到標有奇數(shù)卡片的概率是,抽取的2張卡片標有數(shù)字之和大于4的概率為.【點睛】本題主要考查利用畫樹狀圖或列表求概率問題,本題關(guān)鍵在于能夠列出表格21、(1);(2)2.【解析】根據(jù)特殊角的銳角三角函數(shù)的值即可求出答案.【詳解】(1)原式=()2﹣×+1=﹣+1=,(2)原式=(cos245°+sin245°)+(sin254°+cos254°)=1+1=2【點睛】本題考查了銳角三角函數(shù)的定義,解題的關(guān)鍵是熟練運用特殊角的銳角三角函數(shù)的定義.22、(1)12cm;(2)12+6或12?6.【分析】(1)利用銳角三角函數(shù)關(guān)系得出,進而求出CD即可;(2)利用銳角三角函數(shù)關(guān)系得出,再由勾股定理求出DE、AE的值,即可求出AD的長度.【詳解】解:(1)∵∠BAC=24°,,∴∴,∴支撐臂的長為12cm(2)如圖,過點C作CE⊥AB,于點E,當∠BAC=12°時,∴∴∵CD=12,∴由勾股定理得:,∴AD的長為(12+6)cm或(12?6)cm【點睛】本題考查了解直角三角形的應用,熟練運用三角函數(shù)關(guān)系是解題關(guān)鍵.23、(1)①“勻稱中線”是BE,它是AC邊上的中線,②BC:AC:AB=;(2)CD=a,CM不是△ACD的“勻稱中線”.理由見解析.【分析】(1)①先作出Rt△ABC的三條中線AD、BE、CF,然后利用勻稱中線的定義分別驗證即可得出答案;②設AC=2a,利用勾股定理分別把BC,AB的長度求出來即可得出答案.(2)由②知:AC:AD:CD=,設AC=,則AD=2a,CD=,過點C作CH⊥AB,垂足為H,利用的面積建立一個關(guān)于a的方程,解方程即可求出CD的長度;假設CM是△ACD的“勻稱中線”,看能否與已知的定理和推論相矛盾,如果能,則說明假設不成立,如果不能推出矛盾,說明假設成立.【詳解】(1)①如圖①,作Rt△ABC的三條中線AD、BE、CF,∵∠ACB=90°,∴CF=,即CF不是“勻稱中線”.又在Rt△ACD中,AD>AC>BC,即AD不是“勻稱中線”.∴“勻稱中線”是BE,它是AC邊上的中線,②設AC=2a,則CE=a,BE=2a,在Rt△BCE中∠BCE=90°,∴BC=,在Rt△ABC中,AB=,∴BC:AC:AB=(2)由旋轉(zhuǎn)可知,∠DAE=∠BAC=45°.AD=AB>AC,∴∠DAC=∠DAE+∠BAC=90°,AD>AC,∵Rt△ACD是“勻稱三角形”.由②知
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年資深灶房師傅勞務協(xié)議范本版B版
- 2024年節(jié)能環(huán)保項目建議書編制規(guī)范合同文本3篇
- 2024漁船租賃及海洋環(huán)境保護項目合同范本3篇
- 2024年股權(quán)讓渡協(xié)議范本下載版B版
- 2024年車位銷售與客戶關(guān)系維護服務合同
- 2024深圳南山區(qū)生物醫(yī)藥研發(fā)合作合同
- 二零二五年度出納人員聘用及財務系統(tǒng)維護合同3篇
- 2024年閉路電視監(jiān)控采購合同
- 2025年度河北房開股權(quán)購買協(xié)議3篇
- 2024年裝修工程安全施工與質(zhì)量監(jiān)督合同3篇
- 中儲糧在線測評真題及答案
- 給警察培訓急救知識課件
- 少年宮管理制度多篇培訓
- 銷售秒殺方案
- 第1課+古代亞非(教學設計)【中職專用】《世界歷史》(高教版2023基礎模塊)
- 山西省呂梁市孝義市2023-2024學年八年級上學期期末道德與法治試題
- 新生兒出生后的注意事項課件
- 2024年6月廣東省高中學業(yè)水平考試物理試卷(附答案)
- 親近母語“西游智慧數(shù)學”系列
- 國家開放大學電大本科《古代小說戲曲專題》2024期末試題及答案(試卷號:1340)
- 高考英語復習備考:語篇銜接連貫的“七選五”教學設計
評論
0/150
提交評論