2022-2023學(xué)年山東省壽光市紀(jì)臺鎮(zhèn)第二初級中學(xué)數(shù)學(xué)九上期末聯(lián)考模擬試題含解析_第1頁
2022-2023學(xué)年山東省壽光市紀(jì)臺鎮(zhèn)第二初級中學(xué)數(shù)學(xué)九上期末聯(lián)考模擬試題含解析_第2頁
2022-2023學(xué)年山東省壽光市紀(jì)臺鎮(zhèn)第二初級中學(xué)數(shù)學(xué)九上期末聯(lián)考模擬試題含解析_第3頁
2022-2023學(xué)年山東省壽光市紀(jì)臺鎮(zhèn)第二初級中學(xué)數(shù)學(xué)九上期末聯(lián)考模擬試題含解析_第4頁
2022-2023學(xué)年山東省壽光市紀(jì)臺鎮(zhèn)第二初級中學(xué)數(shù)學(xué)九上期末聯(lián)考模擬試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.已知是方程x2﹣2x+c=0的一個根,則c的值是()A.﹣3 B.3 C. D.22.與相似,且面積比,則與的相似比為()A. B. C. D.3.二次函數(shù)圖象上部分點的坐標(biāo)對應(yīng)值列表如下:則該函數(shù)圖象的對稱軸是()……-3-2-101…………-17-17-15-11-5……A. B. C. D.4.已知點A(1,a)、點B(b,2)關(guān)于原點對稱,則a+b的值為()A.3 B.-3 C.-1 D.15.如圖直線y=mx與雙曲線y=交于點A、B,過A作AM⊥x軸于M點,連接BM,若S△AMB=2,則k的值是()A.1 B.2 C.3 D.46.下列圖形中,不是中心對稱圖形的是()A. B. C. D.7.如圖,⊙O的直徑長10,弦AB=8,M是弦AB上的動點,則OM的長的取值范圍是()A.3≤OM≤5 B.4≤OM≤5 C.3<OM<5 D.4<OM<58.如圖,四邊形是的內(nèi)接四邊形,與的延長線交于點,與的延長線交于點,,,則的度數(shù)為()A.38° B.48° C.58° D.68°9.將二次函數(shù)y=ax2的圖象先向下平移2個單位,再向右平移3個單位,截x軸所得的線段長為4,則a=()A.1 B. C. D.10.如圖,在中,,垂足為,,若,則的長為()A. B. C.5 D.二、填空題(每小題3分,共24分)11.已知兩圓內(nèi)切,半徑分別為2厘米和5厘米,那么這兩圓的圓心距等于_____厘米.12.已知,如圖,,,且,則與__________是位似圖形,位似比為____________.13.已知m,n是方程的兩個實數(shù)根,則.14.一種藥品原價每盒25元,兩次降價后每盒16元.設(shè)兩次降價的百分率都為x,可列方程________.15.如圖,點是函數(shù)圖象上的一點,連接,交函數(shù)的圖象于點,點是軸上的一點,且,則的面積為_________.16.如圖,在平面直角坐標(biāo)系xOy中,四邊形ODEF和四邊形ABCD都是正方形,點F在x軸的正半軸上,點C在邊DE上,反比例函數(shù)(k≠0,x>0)的圖象過點B,E,若AB=2,則k的值為________.17.如圖,AC是⊙O的直徑,B,D是⊙O上的點,若⊙O的半徑為3,∠ADB=30°,則的長為____.18.已知,是方程的兩個實根,則______.三、解答題(共66分)19.(10分)已知:△ABC在直角坐標(biāo)平面內(nèi),三個頂點的坐標(biāo)分別為A(0,3)、B(3,4)、C(2,2)(正方形網(wǎng)格中每個小正方形的邊長是一個單位長度).(1)畫出△ABC向下平移4個單位長度得到的△A1B1C1;(2)以點B為位似中心,在網(wǎng)格內(nèi)畫出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為2:1;(3)△A2B2C2的面積是平方單位.20.(6分)已知拋物線y=ax2+2x﹣(a≠0)與y軸交于點A,與x軸的一個交點為B.(1)①請直接寫出點A的坐標(biāo);②當(dāng)拋物線的對稱軸為直線x=﹣4時,請直接寫出a=;(2)若點B為(3,0),當(dāng)m2+2m+3≤x≤m2+2m+5,且am<0時,拋物線最低點的縱坐標(biāo)為﹣,求m的值;(3)已知點C(﹣5,﹣3)和點D(5,1),若拋物線與線段CD有兩個不同的交點,求a的取值范圍.21.(6分)一個不透明的口袋中裝有4張卡片,卡片上分別標(biāo)有數(shù)字1、-2、-3、4,它們除了標(biāo)有的數(shù)字不同之外再也沒有其它區(qū)別,小芳從盒子中隨機抽取一張卡片.(1)求小芳抽到負數(shù)的概率;(2)若小明再從剩余的三張卡片中隨機抽取一張,請你用樹狀圖或列表法,求小明和小芳兩人均抽到負數(shù)的概率.22.(8分)如圖,在平面直角坐標(biāo)系中,點從點運動到點停止,連接,以長為直徑作.(1)若,求的半徑;(2)當(dāng)與相切時,求的面積;(3)連接,在整個運動過程中,的面積是否為定值,如果是,請直接寫出面積的定值,如果不是,請說明理由.23.(8分)定義:如果一個三角形中有兩個內(nèi)角α,β滿足α+2β=90°,那我們稱這個三角形為“近直角三角形”.(1)若△ABC是“近直角三角形”,∠B>90°,∠C=50°,則∠A=度;(2)如圖1,在Rt△ABC中,∠BAC=90°,AB=3,AC=1.若BD是∠ABC的平分線,①求證:△BDC是“近直角三角形”;②在邊AC上是否存在點E(異于點D),使得△BCE也是“近直角三角形”?若存在,請求出CE的長;若不存在,請說明理由.(3)如圖2,在Rt△ABC中,∠BAC=90°,點D為AC邊上一點,以BD為直徑的圓交BC于點E,連結(jié)AE交BD于點F,若△BCD為“近直角三角形”,且AB=5,AF=3,求tan∠C的值.24.(8分)已知:點D是△ABC中AC的中點,AE∥BC,ED交AB于點G,交BC的延長線于點F.(1)求證:△GAE∽△GBF;(2)求證:AE=CF;(3)若BG:GA=3:1,BC=8,求AE的長.25.(10分)在甲乙兩個不透明的口袋中,分別有大小、材質(zhì)完全相同的小球,其中甲口袋中的小球上分別標(biāo)有數(shù)字,,,乙口袋中的小球上分別標(biāo)有數(shù)字,,,從兩口袋中分別各摸一個小球.求摸出小球數(shù)字之和為的概率26.(10分)為滿足市場需求,某超市在五月初五“端午節(jié)”來臨前夕,購進一種品牌粽子,每盒進價是40元.超市規(guī)定每盒售價不得少于45元.根據(jù)以往銷售經(jīng)驗發(fā)現(xiàn);當(dāng)售價定為每盒45元時,每天可以賣出700盒,每盒售價每提高1元,每天要少賣出20盒.(1)試求出每天的銷售量y(盒)與每盒售價x(元)之間的函數(shù)關(guān)系式;(2)當(dāng)每盒售價定為多少元時,每天銷售的利潤P(元)最大?最大利潤是多少?(3)為穩(wěn)定物價,有關(guān)管理部門限定:這種粽子的每盒售價不得高于58元.如果超市想要每天獲得不低于6000元的利潤,那么超市每天至少銷售粽子多少盒?

參考答案一、選擇題(每小題3分,共30分)1、B【分析】把x=代入方程得到關(guān)于c的方程,然后解方程即可.【詳解】解:把x=代入方程x2﹣2x+c=0,得()2﹣2×+c=0,所以c=6﹣1=1.故選:B.【點睛】本題考查了一元二次方程根的性質(zhì),解答關(guān)鍵是將方程的根代入原方程求出字母系數(shù).2、B【分析】根據(jù)面積比為相似比的平方即可得出答案.【詳解】與相似,且面積比與的相似比為與的相似比為故答案為:B.【點睛】本題考查了相似三角形的性質(zhì),比較簡單,熟練掌握性質(zhì)定理是解題的關(guān)鍵.3、B【分析】當(dāng)和時,函數(shù)值相等,所以對稱軸為【詳解】解:根據(jù)題意得,當(dāng)和時,函數(shù)值相等,所以二次函數(shù)圖象的對稱軸為直線故選B【點睛】本題考查了二次函數(shù)的性質(zhì).4、B【分析】由關(guān)于原點對稱的兩個點的坐標(biāo)之間的關(guān)系直接得出a、b的值即可.【詳解】∵點A(1,a)、點B(b,2)關(guān)于原點對稱,∴a=﹣2,b=﹣1,∴a+b=﹣3.故選B.【點睛】關(guān)于原點對稱的兩個點,它們的橫坐標(biāo)互為相反數(shù),縱坐標(biāo)也互為相反數(shù).5、B【解析】此題可根據(jù)反比例函數(shù)圖象的對稱性得到A、B兩點關(guān)于原點對稱,再由S△ABM=1S△AOM并結(jié)合反比例函數(shù)系數(shù)k的幾何意義得到k的值.【詳解】根據(jù)雙曲線的對稱性可得:OA=OB,則S△ABM=1S△AOM=1,S△AOM=|k|=1,則k=±1.又由于反比例函數(shù)圖象位于一三象限,k>0,所以k=1.故選B.【點睛】本題主要考查了反比例函數(shù)y=中k的幾何意義,即過雙曲線上任意一點引x軸、y軸垂線,所得矩形面積為|k|,是經(jīng)??疾榈囊粋€知識點.6、B【分析】將一個圖形繞某一點旋轉(zhuǎn)180°后能與自身完全重合的圖形是中心對稱圖形,根據(jù)定義依次判斷即可得到答案.【詳解】解:A、是中心對稱圖形,故本選項錯誤;B、不是中心對稱圖形,故本選項正確;C、是中心對稱圖形,故本選項錯誤;D、是中心對稱圖形,故本選項錯誤;故選:B.【點睛】此題考查中心對稱圖形的定義,熟記定義并掌握各圖形的特點是解題的關(guān)鍵.7、A【詳解】解:的直徑為10,半徑為5,當(dāng)時,最小,根據(jù)勾股定理可得,與重合時,最大,此時,所以線段的的長的取值范圍為,故選A.【點睛】本題考查垂徑定理,掌握定理內(nèi)容正確計算是本題的解題關(guān)鍵.8、A【分析】根據(jù)三角形的外角性質(zhì)求出,然后根據(jù)圓內(nèi)接四邊形的性質(zhì)和三角形內(nèi)角和定理計算即可.【詳解】解:=故選A【點睛】本題考查了圓周角定理及其推論.9、D【分析】根據(jù)題意可以寫出平移后的函數(shù)解析式,然后根據(jù)截x軸所得的線段長為4,可以求得a的值,本題得以解決.【詳解】解:二次函數(shù)y=ax2的圖象先向下平移2個單位,再向右平移3個單位之后的函數(shù)解析式為y=a(x﹣3)2﹣2,當(dāng)y=0時,ax2﹣6ax+9a﹣2=0,設(shè)方程ax2﹣6ax+9a﹣2=0的兩個根為x1,x2,則x1+x2=6,x1x2=,∵平移后的函數(shù)截x軸所得的線段長為4,∴|x1﹣x2|=4,∴(x1﹣x2)2=16,∴(x1+x2)2﹣4x1x2=16,∴36﹣4×=16,解得,a=,故選:D.【點睛】本題考查解二次函數(shù)綜合題,解題關(guān)鍵是根據(jù)題意可以寫出平移后的函數(shù)解析式.10、A【分析】根據(jù)題意先求出AE和BE的長度,再求出∠BAE的sin值,根據(jù)平行線的性質(zhì)得出∠ADE=∠BAE,即可得出答案.【詳解】∵,∴BE=∴∵ABCD是平行四邊形∴AD∥BC∴∠ADE=∠DEC又∵∠BAE=∠DEC∴∠BAE=∠ADE∴∴故答案選擇A.【點睛】本題考查的是平行四邊形的綜合,難度適中,涉及到了平行四邊形的性質(zhì)以及三角函數(shù)值相關(guān)知識,需要熟練掌握.二、填空題(每小題3分,共24分)11、1【解析】由兩圓的半徑分別為2和5,根據(jù)兩圓位置關(guān)系與圓心距d,兩圓半徑R,r的數(shù)量關(guān)系間的聯(lián)系和兩圓位置關(guān)系求得圓心距即可.【詳解】解:∵兩圓的半徑分別為2和5,兩圓內(nèi)切,∴d=R﹣r=5﹣2=1cm,故答案為1.【點睛】此題考查了圓與圓的位置關(guān)系.解題的關(guān)鍵是掌握兩圓位置關(guān)系與圓心距d,兩圓半徑R,r的數(shù)量關(guān)系間的聯(lián)系.12、7:1【分析】由平行易得△ABC∽△A′B′C′,且兩三角形位似,位似比等于OA′:OA.【詳解】解:∵A′B′∥AB,B′C′∥BC,

∴△ABC∽△A′B′C′,,,∠A′B′O=∠ABO,∠C′B′O=∠CBO,,∠A′B′C′=∠ABC,

∴△ABC∽△A′B′C′,∴△ABC與△A′B′C′是位似圖形,

位似比=AB:A′B′=OA:OA′=(1+3):1=7:1.【點睛】本題考查了相似圖形交于一點的圖形的位似圖形,位似比等于對應(yīng)邊的比.13、3【解析】根據(jù)題意得m+n=?2,mn=?5,所以m+n?mn=2?(-5)=3.14、25(1-x)2=16【解析】試題分析:對于增長率和降低率問題的一般公式為:增長前數(shù)量×=增長后的數(shù)量,降低前數(shù)量×=降低后的數(shù)量,故本題的答案為:15、4【分析】作AE⊥x軸于點E,BD⊥x軸于點D得出△OBD∽△OAE,根據(jù)面積比等于相似比的平方結(jié)合反比例函數(shù)的幾何意義求出,再利用條件“AO=AC”得出,進而分別求出和相減即可得出答案.【詳解】作AE⊥x軸于點E,BD⊥x軸于點D∴△OBD∽△OAE∴根據(jù)反比例函數(shù)的幾何意義可得:,∴∵AO=AC∴OE=EC∴∴,∴故答案為4.【點睛】本題考查的是反比例函數(shù)與幾何的綜合,難度系數(shù)較大,需要熟練掌握反比例函數(shù)的幾何意義.16、【詳解】解:設(shè)E(x,x),∴B(2,x+2),∵反比例函數(shù)(k≠0,x>0)的圖象過點B.E.∴x2=2(x+2),,(舍去),,故答案為17、2π.【分析】根據(jù)圓周角定理求出∠AOB,得到∠BOC的度數(shù),根據(jù)弧長公式計算即可.【詳解】解:由圓周角定理得,∠AOB=2∠ADB=60°,∴∠BOC=180°﹣60°=120°,∴的長=,故答案為:2π.【點睛】本題考查的是圓周角定理、弧長的計算,掌握圓周角定理、弧長公式是解題的關(guān)鍵.18、27【分析】根據(jù)根與系數(shù)的關(guān)系,由x12+x22=(x1+x2)2?2x1x2,即可得到答案.【詳解】∵x1,x2是方程

x2?5x?1=0

的兩根,∴x1+x2=5,x1?x2=?1,∴x12+x22=(x1+x2)2?2x1x2=52-2×(-1)=27;故答案為27.【點睛】本題考查了一元二次方程的根與系數(shù)的關(guān)系,解題的關(guān)鍵是熟練掌握根與系數(shù)的關(guān)系,并正確進行化簡計算.三、解答題(共66分)19、(1)見解析;(2)見解析;(3)1【分析】(1)根據(jù)平移的方向與距離進行畫圖即可;(2)根據(jù)點B為位似中心,且位似比為2:1進行畫圖即可;(3)由網(wǎng)格特點可知,△ABC是等腰直角三角形,∠ACB=90°,根據(jù)坐標(biāo)可求邊長和面積,再根據(jù)相似比即可求出面積.【詳解】解:(1)如圖所示,△ABC向下平移4個單位長度得到的△A1B1C1;(2)如圖所示,△A2B2C2即為所求;(3)則由網(wǎng)格特點可知:AC=BC=,AC⊥BC,∴△ABC的面積=.又∵△A2B2C2與△ABC位似,且位似比為2:1,∴△A2B2C2的面積=.故答案為:1.【點睛】本題主要考查了利用平移變換和位似變換進行作圖,解決問題的關(guān)鍵是掌握:平移圖形時,要先找到圖形的關(guān)鍵點,分別把這幾個關(guān)鍵點按照平移的方向和距離確定對應(yīng)點后,再順次連接對應(yīng)點即可得到平移后的圖形.20、(1)①;②;(2);(1)a>或a<﹣1.【分析】(1)①令x=0,由拋物線的解析式求出y的值,便可得A點坐標(biāo);②根據(jù)拋物線的對稱軸公式列出a的方程,便可求出a的值;(2)把B點坐標(biāo)代入拋物線的解析式,便可求得a的值,再結(jié)合已知條件am<0,得m的取值范圍,再根據(jù)二次函數(shù)的性質(zhì)結(jié)合條件當(dāng)m2+2m+1≤x≤m2+2m+5時,拋物線最低點的縱坐標(biāo)為,列出m的方程,求得m的值,進而得出m的準(zhǔn)確值;(1)用待定系數(shù)法求出CD的解析式,再求出拋物線的對稱軸,進而分兩種情況:當(dāng)a>0時,拋物線的頂點在y軸左邊,要使拋物線與線段CD有兩個不同的交點,則C、D兩必須在拋物線上方,頂點在CD下方,根據(jù)這一條件列出a不等式組,進行解答;當(dāng)a<0時,拋物線的頂點在y軸的右邊,要使拋物線與線段CD有兩個不同的交點,則C、D兩必須在拋物線下方,拋物線的頂點必須在CD上方,據(jù)此列出a的不等式組進行解答.【詳解】(1)①令x=0,得,∴,故答案為:;②∵拋物線的對稱軸為直線x=﹣4,∴,∴a=,故答案為:;(2)∵點B為(1,0),∴9a+6﹣=0,∴a=﹣,∴拋物線的解析式為:,∴對稱軸為x=﹣2,∵am<0,∴m>0,∴m2+2m+1>1>﹣2,∵當(dāng)m2+2m+1≤x≤m2+2m+5時,y隨x的增大而減小,∵當(dāng)m2+2m+1≤x≤m2+2m+5,且am<0時,拋物線最低點的縱坐標(biāo)為﹣,∴,整理得(m2+2m+5)2﹣4(m2+2m+5)﹣12=0,解得,m2+2m+5=6,或m2+2m+5=﹣2(△<0,無解),∴,∵m>0,∴;(1)設(shè)直線CD的解析式為y=kx+b(k≠0),∵點C(﹣5,﹣1)和點D(5,1),∴,∴,∴CD的解析式為,∵y=ax2+2x﹣(a≠0)∴對稱軸為,①當(dāng)a>0時,,則拋物線的頂點在y軸左側(cè),∵拋物線與線段CD有兩個不同的交點,∴,∴;②當(dāng)a<0時,,則拋物線的頂點在y軸左側(cè),∵拋物線與線段CD有兩個不同的交點,∴,∴a<﹣1,綜上,或a<﹣1.【點睛】本題為二次函數(shù)綜合題,難度較大,解題時需注意用待定系數(shù)法求出CD的解析式,再求出拋物線的對稱軸,要分兩種情況進行討論.21、(1);(2)【分析】(1)由一個不透明的口袋中裝有4張卡片,卡片上分別標(biāo)有數(shù)字1、-2、-3、4,它們除了標(biāo)有的數(shù)字不同之外再也沒有其它區(qū)別,小芳從盒子中隨機抽取一張卡片,抽到負數(shù)的有2種情況,直接利用概率公式求解即可求得答案.(2)首先根據(jù)題意畫出樹狀圖或列表,然后由圖表求得所有等可能的結(jié)果與小明和小芳兩人均抽到負數(shù)的情況,再利用概率公式求解即可求得答案.【詳解】(1)∵一個不透明的口袋中裝有4張卡片,卡片上分別標(biāo)有數(shù)字1、-2、-3、4,它們除了標(biāo)有的數(shù)字不同之外再也沒有其它區(qū)別,∴小芳從盒子中隨機抽取一張卡片,抽到負數(shù)的有2種情況,∴P(小芳抽到負數(shù))=(2)畫樹狀圖如下:∵共有12種機會均等的結(jié)果,其中兩人均抽到負數(shù)的有2種,∴P(兩人均抽到負數(shù))=22、(1);(2);(3)是,【分析】(1)若,則,代入數(shù)值即可求得CD,從而求得的半徑.(2)當(dāng)與相切時,則CD⊥AB,利用△ACD∽△ABO,得出比例式求得CD,AD的長,過P點作PE⊥AO于E點,再利用△CPE∽△CAD,得出比例式求得P點的坐標(biāo),即可求得△POB的面積.(3)①若與AB有一個交點,則與AB相切,由(2)可得PD⊥AB,PD=,則②若與AB有兩個交點,設(shè)另一個交點為F,連接CF,則∠CFD=90°,由(2)可得CF=3,過P點作PG⊥AB于G點,則DG=,PG為△DCF的中位線,PG=,則,綜上所述,△PAB的面積是定值,為.【詳解】(1)根據(jù)題意得:OA=8,OB=6,OC=3∴AC=5∵∴即∴CD=∴的半徑為(2)在直角三角形AOB中,OA=8,OB=6,∴AB=,當(dāng)與相切時,CD⊥AB,∴∠ADC=∠AOB=90°,∠CAD=∠BAO∴△ACD∽△ABO∴,即∴CD=3,AD=4∵CD為圓P的直徑∴CP=過P點作PE⊥AO于E點,則∠PEC=∠ADC=90°,∠PCE=∠ACD∴△CPE∽△CAD∴即∴CE=∴OE=故P點的縱坐標(biāo)為∴△POB的面積=(3)①若與AB有一個交點,則與AB相切,由(2)可得PD⊥AB,PD=,則②若與AB有兩個交點,設(shè)另一個交點為F,連接CF,則∠CFD=90°,由(2)可得CF=3,過P點作PG⊥AB于G點,則DG=,PG為△DCF的中位線,PG=,則.綜上所述,△PAB的面積是定值,為.【點睛】本題考查的是圓及相似三角形的綜合應(yīng)用,熟練的掌握直線與圓的位置關(guān)系,相似三角形的判定是關(guān)鍵.23、(1)20;(2)①見解析;②存在,CE=;(3)tan∠C的值為或.【分析】(1)∠B不可能是α或β,當(dāng)∠A=α?xí)r,∠C=β=50°,α+2β=90°,不成立;故∠A=β,∠C=α,α+2β=90°,則β=20°;(2)①如圖1,設(shè)∠=ABD∠DBC=β,∠C=α,則α+2β=90°,故△BDC是“近直角三角形”;②∠ABE=∠C,則△ABC∽△AEB,即,即,解得:AE=,即可求解.(3)①如圖2所示,當(dāng)∠ABD=∠DBC=β時,設(shè)BH=x,則HE=5﹣x,則AH2=AE2﹣HE2=AB2﹣HB2,即52﹣x2=62﹣(5﹣x)2,解得:x=,即可求解;②如圖3所示,當(dāng)∠ABD=∠C=β時,AF∶EF=AG∶GE=2∶3,則DE=2k,則AG=3k=R(圓的半徑)=BG,點H是BE的中點,則GH=DE=k,在△BGH中,BH==2k,在△ABH中,AB=5,BH=2k,AH=AG+HG=1k,由勾股定理得:25=8k2+16k2,解得:k=,即可求解.【詳解】解:(1)∠B不可能是α或β,當(dāng)∠A=α?xí)r,∠C=β=50°,α+2β=90°,不成立;故∠A=β,∠C=α,α+2β=90°,則β=20°,故答案為20;(2)①如圖1,設(shè)∠=ABD∠DBC=β,∠C=α,則α+2β=90°,故△BDC是“近直角三角形”;②存在,理由:在邊AC上是否存在點E(異于點D),使得△BCE是“近直角三角形”,AB=3,AC=1,則BC=5,則∠ABE=∠C,則△ABC∽△AEB,即,即,解得:AE=,則CE=1﹣=;(3)①如圖2所示,當(dāng)∠ABD=∠DBC=β時,則AE⊥BF,則AF=FE=3,則AE=6,AB=BE=5,過點A作AH⊥BC于點H,設(shè)BH=x,則HE=5﹣x,則AH2=AE2﹣HE2=AB2﹣HB2,即52﹣x2=62﹣(5﹣x)2,解得:x=;cos∠ABE===cos2β,則tan2β=,則tanα=;②如圖3所示,當(dāng)∠ABD=∠C=β時,過點A作AH⊥BE交BE于點H,交BD于點G,則點G是圓的圓心(BE的中垂線與直徑的交點),∵∠AEB=∠DAE+∠C=α+β=∠ABC,故AE=AB=5,則EF=AE﹣AF=5﹣3=2,∵DE⊥BC,AH⊥BC,∴ED∥AH,則AF∶EF=AG∶GE=2∶3,則DE=2k,則AG=3k=R(圓的半徑)=BG,點H是BE的中點,則GH=DE=k,在△BGH中,BH==2k,在△ABH中,AB=5,BH=2k,AH=AG+HG=1k,由勾股定理得:25=8k2+16k2,解得:k=;在△ABD中,AB=5,BD=6k=,則cos∠ABD=cosβ===cosC,則tanC=;綜上,tan∠C的值為或.【點睛】本題主要考查了平行四邊形的性質(zhì),全等三角形的判定與性質(zhì),三角函數(shù)值等知識.屬于圓的綜合題,解決本題需要我們熟練各部分的內(nèi)容,對學(xué)生的綜合能力要求較高,一定要注意將所學(xué)知識貫穿起來.24、(1)詳見解析;(2)詳見解析

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論