版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.中國“一帶一路”戰(zhàn)略給沿線國家和地區(qū)帶來很大的經濟效益,沿線某地區(qū)居民2016年年收入300美元,預計2018年年收入將達到1500美元,設2016年到2018年該地區(qū)居民年人均收入平均增長率為x,可列方程為()A.300(1+x)2=1500 B.300(1+2x)=1500C.300(1+x2)=1500 D.300+2x=15002.如圖,、分別切⊙于、,,⊙半徑為,則的長為()A. B. C. D.3.把球放在長方體紙盒內,球的一部分露出盒外,其截面如圖所示,已知,則球的半徑長是()A.2 B.2.5 C.3 D.44.如圖,Rt△ABC中,∠B=90°,AB=3,BC=2,則cosA=()A. B. C. D.5.如圖,各正方形的邊長均為1,則四個陰影三角形中,一定相似的一對是()A.①② B.①③ C.②③ D.③④6.如圖,已知點在反比例函數(shù)上,軸,垂足為點,且的面積為,則的值為()A. B. C. D.7.一枚質地勻均的骰子,其六個面上分別標有數(shù)字:1,2,3,4,5,6,投擲一次,朝上面的數(shù)字大于4的概率是()A. B. C. D.8.如圖,正六邊形ABCDEF內接于⊙O,若直線PA與⊙O相切于點A,則∠PAB=()A.30° B.35° C.45° D.60°9.《九章算術》中有一題“今有勾八步,股十五步,問勾中容圓徑幾何?”其意思是:“今有直角三角形,勾(短直角邊)長為步,股(長直角邊)長為步,問該直角三角形能容納的圓形(內切圓)直徑是()A.步 B.步 C.步 D.步10.如圖下列條件中不能判定的是()A. B.C. D.二、填空題(每小題3分,共24分)11.從,0,,,1.6中隨機取一個數(shù),取到無理數(shù)的概率是__________.12.如圖,在平面直角坐標系中,直線y=﹣3x+3與x軸、y軸分別交于A、B兩點,以AB為邊在第一象限作正方形,點D恰好在雙曲線上,則k值為_____.13.150°的圓心角所對的弧長是5πcm,則此弧所在圓的半徑是______cm.14.設x1,x2是方程x2+3x﹣1=0的兩個根,則x1+x2=_____.15.計算的結果是_______.16.在一次夏令營中,小亮從位于點的營地出發(fā),沿北偏東60°方向走了到達地,然后再沿北偏西30°方向走了若干千米到達地,測得地在地南偏西30°方向,則、兩地的距離為_________.17.反比例函數(shù)的圖象在第象限.18.二次函數(shù)y=(x﹣1)2﹣5的頂點坐標是_____.三、解答題(共66分)19.(10分)如圖,直線分別與軸交于點,與軸交于點,與雙曲線交于點.(1)求與的值;(2)已知是軸上的一點,當時,求點的坐標.20.(6分)如圖,AB是⊙O的直徑,CD是⊙O的一條弦,且CD⊥AB于點E.(1)求證:∠BCO=∠D;(2)若CD=,AE=2,求⊙O的半徑.21.(6分)小明和小亮兩人一起玩投擲一個普通正方體骰子的游戲.(1)說出游戲中必然事件,不可能事件和隨機事件各一個;(2)如果兩個骰子上的點數(shù)之積為奇數(shù),小明勝,否則小亮勝,你認為這個游戲公平嗎?如果不公平,誰獲勝的可能性較大?請說明理由.請你為他們設計一個公平的游戲規(guī)則.22.(8分)如圖,直線y=x﹣1與拋物線y=﹣x2+6x﹣5相交于A、D兩點.拋物線的頂點為C,連結AC.(1)求A,D兩點的坐標;(2)點P為該拋物線上一動點(與點A、D不重合),連接PA、PD.①當點P的橫坐標為2時,求△PAD的面積;②當∠PDA=∠CAD時,直接寫出點P的坐標.23.(8分)蘇北五市聯(lián)合通過網絡投票選出了一批“最有孝心的美少年”.根據(jù)各市的入選結果制作出如下統(tǒng)計表,后來發(fā)現(xiàn),統(tǒng)計表中前三行的所有數(shù)據(jù)都是正確的,后兩行中有一個數(shù)據(jù)是錯誤的.請回答下列問題:(1)統(tǒng)計表________,________;(2)統(tǒng)計表后三行中哪一個數(shù)據(jù)是錯誤的?該數(shù)據(jù)的正確值是多少?(3)組委會決定從來自宿遷市的4位“最有孝心的美少年”中,任選兩位作為蘇北五市形象代言人,、是宿遷市“最有孝心的美少年”中的兩位,問、同時入選的概率是多少?并請畫出樹狀圖或列出表格.區(qū)域頻數(shù)頻率宿遷4a連云港70.175淮安0.2徐州100.25鹽城120.27524.(8分)如下圖1,將三角板放在正方形上,使三角板的直角頂點與正方形的頂點重合,三角板的一邊交于點.另一邊交的延長線于點.(1)觀察猜想:線段與線段的數(shù)量關系是;(2)探究證明:如圖2,移動三角板,使頂點始終在正方形的對角線上,其他條件不變,(1)中的結論是否仍然成立?若成立,請給予證明:若不成立.請說明理由:(3)拓展延伸:如圖3,將(2)中的“正方形”改為“矩形”,且使三角板的一邊經過點,其他條件不變,若、,求的值.25.(10分)為了了解班級學生數(shù)學課前預習的具體情況,鄭老師對本班部分學生進行了為期一個月的跟蹤調查,他將調查結果分為四類:A:很好;B:較好;C:一般;D:不達標,并將調查結果繪制成以下兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖解答下列問題:(1)C類女生有名,D類男生有名,將上面條形統(tǒng)計圖補充完整;(2)扇形統(tǒng)計圖中“課前預習不達標”對應的圓心角度數(shù)是;(3)為了共同進步,鄭老師想從被調查的A類和D類學生中各隨機機抽取一位同學進行“一幫一”互助學習,請用畫樹狀圖或列表的方法求出所選兩位同學恰好是一男一女同學的概率,26.(10分)已知二次函數(shù)中,函數(shù)與自變量的部分對應值如下表:············(1)求該二次函數(shù)的表達式;(2)當時,的取值范圍是.
參考答案一、選擇題(每小題3分,共30分)1、A【詳解】解:設2016年到2018年該地區(qū)居民年人均收入平均增長率為x,那么根據(jù)題意得2018年年收入為:300(1+x)2,列出方程為:300(1+x)2=1.故選A.2、C【分析】連接PO、AO、BO,由角平分線的判定定理得,PO平分∠APB,則∠APO=30°,得到PO=4,由勾股定理,即可求出PA.【詳解】解:連接PO、AO、BO,如圖:∵、分別切⊙于、,∴,,AO=BO,∴PO平分∠APB,∴∠APO==30°,∵AO=2,∠PAO=90°,∴PO=2AO=4,由勾股定理,則;故選:C.【點睛】本題考查了圓的切線的性質,角平分線的判定定理,以及勾股定理,解題的關鍵是掌握角平分線的判定定理,得到∠APO=30°.3、B【解析】取EF的中點M,作MN⊥AD于點M,取MN上的球心O,連接OF,設OF=x,則OM=4-x,MF=2,然后在Rt△MOF中利用勾股定理求得OF的長即可.【詳解】如圖:EF的中點M,作MN⊥AD于點M,取MN上的球心O,連接OF,∵四邊形ABCD是矩形,∴∠C=∠D=90°,∴四邊形CDMN是矩形,∴MN=CD=4,設OF=x,則ON=OF,∴OM=MN-ON=4-x,MF=2,在直角三角形OMF中,OM2+MF2=OF2,即:(4-x)2+22=x2,解得:x=2.5,故選B.【點睛】本題主考查垂徑定理及勾股定理的知識,正確作出輔助線構造直角三角形是解題的關鍵.4、D【分析】根據(jù)勾股定理求出AC,根據(jù)余弦的定義計算得到答案.【詳解】由勾股定理得,AC===,則cosA===,故選:D.【點睛】本題考查的是銳角三角函數(shù)的定義,掌握銳角A的鄰邊b與斜邊c的比叫做∠A的余弦是解題的關鍵.5、A【分析】利用勾股定理,求出四個圖形中陰影三角形的邊長,然后判斷哪兩個三角形的三邊成比例即可.【詳解】解:由圖,根據(jù)勾股定理,可得出①圖中陰影三角形的邊長分別為:;②圖中陰影三角形的邊長分別為:;③圖中陰影三角形的邊長分別為:;④圖中陰影三角形的邊長分別為:;可以得出①②兩個陰影三角形的邊長,所以圖①②兩個陰影三角形相似;故答案為:A.【點睛】本題考查相似三角形的判定,即如果兩個三角形三條邊對應成比例,則這兩個三角形相似;本題在做題過程中還需注意,陰影三角形的邊長利用勾股定理計算,有的圖形需要把小正方形補全后計算比較準確.6、C【分析】根據(jù)反比例函數(shù)中的比例系數(shù)k的幾何意義即可得出答案.【詳解】∵點在反比例函數(shù),的面積為故選:C.【點睛】本題主要考查反比例函數(shù)中的比例系數(shù)k的幾何意義,掌握反比例函數(shù)中的比例系數(shù)k的幾何意義是解題的關鍵.7、B【分析】直接得出朝上面的數(shù)字大于4的個數(shù),再利用概率公式求出答案.【詳解】∵一枚質地均勻的骰子,其六個面上分別標有數(shù)字1,2,3,4,5,6,投擲一次,∴共有6種情況,其中朝上面的數(shù)字大于4的情況有2種,∴朝上一面的數(shù)字是朝上面的數(shù)字大于4的概率為:,故選:B.【點睛】本題考查簡單的概率求法,概率=所求情況數(shù)與總情況數(shù)的比;熟練掌握概率公式是解題關鍵.8、A【解析】試題分析:連接OA,根據(jù)直線PA為切線可得∠OAP=90°,根據(jù)正六邊形的性質可得∠OAB=60°,則∠PAB=∠OAP-∠OAB=90°-60°=30°.考點:切線的性質9、A【分析】根據(jù)勾股定理求出直角三角形的斜邊,即可確定出內切圓半徑,進而得出直徑.【詳解】根據(jù)勾股定理,得斜邊為,則該直角三角形能容納的圓形(內切圓)半徑(步),即直徑為6步,故答案為A.【點睛】此題主要考查了三角形的內切圓與內心,熟練掌握,即可解題.10、C【分析】根據(jù)相似三角形的判定定理對各個選項逐一分析即可.【詳解】A.,可以判定,不符合題意;B.,可以判定,不符合題意;C.不是對應邊成比例,且不是相應的夾角,不能判定,符合題意;D.即且,可以判定,不符合題意.故選C.【點睛】本題考查了相似三角形的判定定理,熟練掌握判定定理是解題的關鍵.二、填空題(每小題3分,共24分)11、【分析】由題意可得共有5種等可能的結果,其中無理數(shù)有:,共2種情況,則可利用概率公式求解.【詳解】∵共有5種等可能的結果,無理數(shù)有:,共2種情況,∴取到無理數(shù)的概率是:.故答案為:.【點睛】此題考查了概率公式的應用與無理數(shù)的定義.此題比較簡單,注意用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.12、1【解析】作DH⊥x軸于H,如圖,
當y=0時,-3x+3=0,解得x=1,則A(1,0),
當x=0時,y=-3x+3=3,則B(0,3),
∵四邊形ABCD為正方形,
∴AB=AD,∠BAD=90°,
∴∠BAO+∠DAH=90°,
而∠BAO+∠ABO=90°,
∴∠ABO=∠DAH,
在△ABO和△DAH中∴△ABO≌△DAH,
∴AH=OB=3,DH=OA=1,
∴D點坐標為(1,1),
∵頂點D恰好落在雙曲線y=上,
∴a=1×1=1.故答案是:1.13、1;【解析】解:設圓的半徑為x,由題意得:=5π,解得:x=1,故答案為1.點睛:此題主要考查了弧長計算,關鍵是掌握弧長公式l=(弧長為l,圓心角度數(shù)為n,圓的半徑為R).14、﹣1.【分析】直接根據(jù)一元二次方程根與系數(shù)的關系求解即可.【詳解】解:∵x1,x2是方程x2+1x﹣1=0的兩個根,∴x1+x2=﹣1.故答案為﹣1.【點睛】本題考查了根與系數(shù)的關系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根時,x1+x2=-,x1x2=.15、【分析】根據(jù)分式的加減運算法則,先通分,再加減.【詳解】解:原式====.故答案為:.【點睛】本題考查了分式的加減運算,解題的關鍵是掌握運算法則和運算順序.16、【分析】由已知可得到△ABC是直角三角形,從而根據(jù)三角函數(shù)即可求得AC的長.【詳解】解:如圖.由題意可知,AB=5km,∠2=30°,∠EAB=60°,∠3=30°.
∵EF//PQ,
∴∠1=∠EAB=60°
又∵∠2=30°,
∴∠ABC=180°?∠1?∠2=180°?60°?30°=90°,
∴△ABC是直角三角形.
又∵MN//PQ,
∴∠4=∠2=30°.
∴∠ACB=∠4+∠3=30°+30°=60°.
∴AC===(km),
故答案為.【點睛】本題考查了解直角三角形的相關知識,解答此類題目的關鍵是根據(jù)題意畫出圖形利用解直角三角形的相關知識解答.17、二、四【解析】:∵k=-1<0,∴反比例函數(shù)y="-1/x"中,圖象在第二、四象限18、(1,﹣5)【分析】已知解析式為拋物線的頂點式,根據(jù)頂點式的坐標特點,直接寫出頂點坐標.【詳解】解:因為y=(x﹣1)2﹣5是拋物線的頂點式,根據(jù)頂點式的坐標特點,頂點坐標為(1,﹣5).故答案為:(1,﹣5).【點睛】本題考查了二次函數(shù)的性質,根據(jù)二次函數(shù)的頂點式找出拋物線的對稱軸及頂點坐標是解題的關鍵.三、解答題(共66分)19、(1)12;(2)或.【解析】(1)把點(4,m)代入直線求得m,然后代入與反比例函數(shù),求出k;(2)設點P的縱坐標為y,一次函數(shù)與x軸相交于點A,與y軸相交于點C,則A(-2,0),C(0,1),然后根據(jù)S△ABP=S△APC+S△BPC列出關于y的方程,解方程求得即可.【詳解】解:(1)點在一次函數(shù)上,,又點在反比例函數(shù)上,;(2)設點的縱坐標為,一次函數(shù)與軸相交于點,與軸相交于點,,,又點在軸上,,,即,,或或.【點睛】本題考查的是反比例函數(shù)的圖象與一次函數(shù)圖象的交點問題,三角形的面積等知識,求出交點坐標,利用數(shù)形結合思想是解題的重點.20、(1)見解析;(2)1.【解析】試題分析:根據(jù)OC=OB得到∠BCO=∠B,根據(jù)弧相等得到∠B=∠D,從而得到答案;根據(jù)題意得出CE的長度,設半徑為r,則OC=r,OE=r-2,根據(jù)Rt△OCE的勾股定理得出半徑.試題解析:(1)證明:∵OC=OB,∴∠BCO=∠B∵,∴∠B=∠D,∴∠BCO=∠D.(2)解:∵AB是⊙O的直徑,CD⊥AB,∴CE=.在Rt△OCE中,OC2=CE2+OE2,設⊙O的半徑為r,則OC=r,OE=OA-AE=r-2,∴,解得:r=1,∴⊙O的半徑為1考點:圓的基本性質21、(1)詳見解析;(2)不公平,規(guī)則詳見解析.【分析】(1)根據(jù)題意說出即可;(2)游戲是否公平,關鍵要看游戲雙方獲勝的機會是否相等,即判斷雙方取勝的概率是否相等,或轉化為在總情況明確的情況下,判斷雙方取勝所包含的情況數(shù)目是否相等,算出該情況下兩人獲勝的概率.【詳解】(1)必然事件是兩次投出的朝上的數(shù)字之和大于1;不可能事件是兩次投出的朝上的數(shù)字之和為13;隨機事件是兩次投出的朝上的數(shù)字之和為5;(2)不公平.所得積是奇數(shù)的概率為×=,故小明獲勝的概率為,小亮獲勝的概率為,小亮獲勝的可能性較大.將“點數(shù)之積”改為“點數(shù)之和”.【點睛】考查了判斷的游戲公平性.判斷游戲公平性就要計算每個事件的概率,概率相等就公平,否則就不公平,用到的知識點為:必然事件指在一定條件下一定發(fā)生的事件;不可能事件是指在一定條件下,一定不發(fā)生的事件;不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.概率=所求情況數(shù)與總情況數(shù)之比.22、(1)A(1,0),D(4,3);(2)①當點P的橫坐標為2時,求△PAD的面積;②當∠PDA=∠CAD時,直接寫出點P的坐標.【分析】(1)由于A、D是直線直線y=x﹣1與拋物線y=﹣x2+6x﹣5的交點,要求兩個交點的坐標,需可聯(lián)立方程組求解;(2)①要求△PAD的面積,可以過P作PE⊥x軸,與AD相交于點E,求得PE,再用△PAE和△PDE的面積和求得結果;②分兩種情況解答:過D點作DP∥AC,與拋物線交于點P,求出AC的解析式,進而得PD的解析式,再解PD的解析式與拋物線的解析式聯(lián)立方程組,便可求得P點坐標;當P點在AD上方時,延長DP與y軸交于F點,過F點作FG∥AC與AD交于點G,則∠CAD=∠FGD=∠PDA,則FG=FD,設F點坐標為(0,m),求出G點的坐標(用m表示),再由FG=FD,列出m的方程,便可求得F點坐標,從而求出DF的解析式,最后解DF的解析式與拋物線的解析式聯(lián)立的方程組,便可求得P點坐標.【詳解】(1)聯(lián)立方程組,解得,,,∴A(1,0),D(4,3),(2)①過P作PE⊥x軸,與AD相交于點E,∵點P的橫坐標為2,∴P(2,3),E(2,1),∴PE=3﹣1=2,∴=3;②過點D作DP∥AC,與拋物線交于點P,則∠PDA=∠CAD,∵y=-x2+6x-5=-(x-3)2+4,∴C(3,4),設AC的解析式為:y=kx+b(k≠0),∵A(1,0),∴,∴,∴AC的解析式為:y=2x-2,設DP的解析式為:y=2x+n,把D(4,3)代入,得3=8+n,∴n=-5,∴DP的解析式為:y=2x-5,聯(lián)立方程組,解得,,,∴此時P(0,-5),當P點在直線AD上方時,延長DP,與y軸交于點F,過F作FG∥AC,F(xiàn)G與AD交于點G,則∠FGD=∠CAD=∠PDA,∴FG=FD,設F(0,m),∵AC的解析式為:y=2x-2,∴FG的解析式為:y=2x+m,聯(lián)立方程組,解得,,∴G(-m-1,-m-2),∴FG=,F(xiàn)D=,∵FG=FD,∴=,∴m=-5或1,∵F在AD上方,∴m>-1,∴m=1,∴F(0,1),設DF的解析式為:y=qx+1(q≠0),把D(4,3)代入,得4q+1=3,∴q=,∴DF的解析式為:y=x+1,聯(lián)立方程組∴,,∴此時P點的坐標為(,),綜上,P點的坐標為(0,-5)或(,).【點睛】本題是一次函數(shù)、二次函數(shù)、三角形的綜合題,主要考查了一次函數(shù)的性質,二次函數(shù)的圖象與性質,三角形的面積計算,平行線的性質,待定系數(shù)法,難度較大,第(2)小題,關鍵過P作x軸垂線,將所求三角形的面積轉化成兩個三角形的面積和進行解答;第(3)小題,分兩種情況解答,不能漏解,考慮問題要全面.23、(1)1.1,8;(2)鹽城市對應頻數(shù)12這個數(shù)據(jù)是錯誤的,該數(shù)據(jù)的正確值是11;(3)【分析】(1)利用連云港的頻數(shù)及頻率求出總數(shù),再根據(jù)a的頻數(shù)、b的頻率利用公式即可求出答案;(2)計算各組的頻率和是否得1,根據(jù)頻率計算各組頻數(shù)是否正確,由此即可判斷出錯誤的數(shù)據(jù);(3)設來自宿遷的4位“最有孝心的美少年”為、、、,列表表示所有可能的情況,再根據(jù)概率公式計算即可.【詳解】(1)∵連云港市頻數(shù)為7,頻率為1.175,∴數(shù)據(jù)總數(shù)為,∴,.故答案為1.1,8;(2)∵,∴各組頻率正確,∵,∴鹽城市對應頻數(shù)12這個數(shù)據(jù)是錯誤的,該數(shù)據(jù)的正確值是11;(3)設來自宿遷的4位“最有孝心的美少年”為、、、,列表如下:∵共有12種等可能的結果,、同時入選的有2種情況,∴、同時入選的概率是:.【點睛】此題考查統(tǒng)計計算能力,正確理解頻數(shù)分布表,依據(jù)表格得到相應的信息,能正確計算總數(shù),部分的數(shù)量,部分的頻率,利用列表法求事件的概率.24、(1);(2)成立,證明過程見解析;(3).【分析】(1)利用三角形全等的判定定理與性質即可得;(2)如圖(見解析),過點分別作,垂足分別為,證明方法與題(1)相同;(3)如圖(見解析),過點分別作,垂足分別為,先同(2)求出,從而可證,由相似三角形的性質可得,再根據(jù)平行線的性質和相似三角形的性質求出的值,即可得出答案.【詳解】(1),理由如下:由直角三角板和正方形的性質得在和中,;(2)成立,證明如下:如圖,過點分別作,垂足分別為,則四邊形是矩形由正方形對角線的性質得,為的角平分線則在和中,;(3)如圖,過
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度電子煙具噴漆定制合同
- 2025年度苗木種植基地綠色認證合作合同4篇
- 2025年版城市綠地門衛(wèi)及環(huán)境安全維護合同4篇
- 2025年個人住宅防水工程驗收合同范本2篇
- 二零二五年度棉被產品展示與體驗店合作經營合同4篇
- 2025年度個人二手房買賣合同售后服務與糾紛調解協(xié)議
- 2025年度個人旅游保險合同范本6篇
- 2025年度民間汽車質押借款電子支付合同范本3篇
- 2025年度豪華品牌個人二手車買賣合同范本2篇
- 2025年度擬上公司與會計事務所財務信息處理保密合同4篇
- 《白蛇緣起》賞析
- 海洋工程用高性能建筑鋼材的研發(fā)
- 蘇教版2022-2023學年三年級數(shù)學下冊開學摸底考試卷(五)含答案與解析
- 英語48個國際音標課件(單詞帶聲、附有聲國際音標圖)
- GB/T 6892-2023一般工業(yè)用鋁及鋁合金擠壓型材
- 冷庫安全管理制度
- 2023同等學力申碩統(tǒng)考英語考試真題
- 家具安裝工培訓教案優(yōu)質資料
- 在雙減政策下小學音樂社團活動有效開展及策略 論文
- envi二次開發(fā)素材包-idl培訓
- 醫(yī)院手術室醫(yī)院感染管理質量督查評分表
評論
0/150
提交評論