2023屆江蘇省淮安市三樹鎮(zhèn)蔣集九一貫制學校數(shù)學九年級第一學期期末經(jīng)典試題含解析_第1頁
2023屆江蘇省淮安市三樹鎮(zhèn)蔣集九一貫制學校數(shù)學九年級第一學期期末經(jīng)典試題含解析_第2頁
2023屆江蘇省淮安市三樹鎮(zhèn)蔣集九一貫制學校數(shù)學九年級第一學期期末經(jīng)典試題含解析_第3頁
2023屆江蘇省淮安市三樹鎮(zhèn)蔣集九一貫制學校數(shù)學九年級第一學期期末經(jīng)典試題含解析_第4頁
2023屆江蘇省淮安市三樹鎮(zhèn)蔣集九一貫制學校數(shù)學九年級第一學期期末經(jīng)典試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每題4分,共48分)1.如圖,在中..是的角平分線.若在邊上截取,連接,則圖中等腰三角形共有()A.3個 B.5個 C.6個 D.2個2.二次函數(shù)的圖象與軸的交點個數(shù)是()A.2個 B.1個 C.0個 D.不能確定3.對于二次函數(shù),下列說法正確的是()A.圖象開口方向向下; B.圖象與y軸的交點坐標是(0,-3);C.圖象的頂點坐標為(1,-3); D.拋物線在x>-1的部分是上升的.4.方程5x2﹣2=﹣3x的二次項系數(shù)、一次項系數(shù)、常數(shù)項分別是()A.5、3、﹣2 B.5、﹣3、﹣2 C.5、3、2 D.5、﹣3、25.如圖,點A.B.C在⊙D上,∠ABC=70°,則∠ADC的度數(shù)為()A.110° B.140° C.35° D.130°6.方程的解是()A.4 B.-4 C.-1 D.4或-17.如圖,AC是⊙O的內(nèi)接正四邊形的一邊,點B在弧AC上,且BC是⊙O的內(nèi)接正六邊形的一邊.若AB是⊙O的內(nèi)接正n邊形的一邊,則n的值為()A.6 B.8 C.10 D.128.如圖,E是平行四邊形ABCD的對角線BD上的點,連接AE并延長交BC于點F,且,則的值是()A. B. C. D.9.⊙O的半徑為5cm,弦AB//CD,且AB=8cm,CD=6cm,則AB與CD之間的距離為()A.1cm B.7cm C.3cm或4cm D.1cm或7cm10.如圖,在△ABC中,點G為△ABC的重心,過點G作DE∥BC,分別交AB、AC于點D、E,則△ADE與四邊形DBCE的面積比為()A. B. C. D.11.已知反比例函數(shù)的圖象經(jīng)過點(1,2),則k的值為()A.0.5 B.1 C.2 D.412.某簡易房示意圖如圖所示,它是一個軸對稱圖形,則坡屋頂上弦桿AB的長為()A.米 B.米 C.米 D.米二、填空題(每題4分,共24分)13.已知方程x2﹣3x﹣5=0的兩根為x1,x2,則x12+x22=_________.14.如圖,路燈距離地面8米,身高1.6米的小明站在距離燈的底部(點O)20米的A處,則小明的影子AM長為米.15.如圖,在菱形中,,,點,,分別為線段,,上的任意一點,則的最小值為__________.16.如圖,拋物線y1=a(x+2)2+m過原點,與拋物線y2=(x﹣3)2+n交于點A(1,3),過點A作x軸的平行線,分別交兩條拋物線于點B,C.下列結論:①兩條拋物線的對稱軸距離為5;②x=0時,y2=5;③當x>3時,y1﹣y2>0;④y軸是線段BC的中垂線.正確結論是________(填寫正確結論的序號).17.用一個圓心角為150o,半徑為8的扇形作一個圓錐的側面,這個圓錐的底面圓的半徑為________.18.二次函數(shù)y=﹣x2+bx+c的部分圖象如圖所示,由圖象可知,不等式﹣x2+bx+c<0的解集為______.三、解答題(共78分)19.(8分)如圖,在中,弦AB,CD相交于點E,=,點D在上,連結CO,并延長CO交線段AB于點F,連接OA,OB,且OA=2,∠OBA=30°(1)求證:∠OBA=∠OCD;(2)當AOF是直角三角形時,求EF的長;(3)是否存在點F,使得,若存在,請求出EF的長,若不存在,請說明理由.20.(8分)小明家所在居民樓的對面有一座大廈AB,高為74米,為測量居民樓與大廈之間的距離,小明從自己家的窗戶C處測得大廈頂部A的仰角為37°,大廈底部B的俯角為48°.(1)求∠ACB的度數(shù);(2)求小明家所在居民樓與大廈之間的距離.(參考數(shù)據(jù):sin37°≈,cos37°≈,tan37°≈,sin48°≈,cos48°≈,tan48°≈)21.(8分)如圖,在平面直角坐標系中,的三個頂點分別為.(1)點關于原點對稱點分別為點,,寫出點,的坐標;(2)作出關于原點對稱的圖形;(3)線段與線段的數(shù)量關系是__________,線段與線段的關系是__________.22.(10分)如圖,AD是⊙O的直徑,AB為⊙O的弦,OP⊥AD,OP與AB的延長線交于點P,過B點的切線交OP于點C(1)求證:∠CBP=∠ADB(2)若OA=2,AB=1,求線段BP的長.23.(10分)已知二次函數(shù)的圖象經(jīng)過點A(0,4),B(2,m).(1)求二次函數(shù)圖象的對稱軸.(2)求m的值.24.(10分)如圖是由6個形狀、大小完全相同的小矩形組成的,小矩形的頂點稱為格點.已知小矩形較短邊長為1,的頂點都在格點上.(1)用無刻度的直尺作圖:找出格點,連接,使;(2)在(1)的條件下,連接,求的值.25.(12分)某企業(yè)設計了一款工藝品,每件成本40元,出于營銷考慮,要求每件售價不得低于40元,但物價部門要求每件售價不得高于60元.據(jù)市場調查,銷售單價是50元時,每天的銷售量是100件,而銷售單價每漲1元,每天就少售出2件,設單價上漲元.(1)求當為多少時每天的利潤是1350元?(2)設每天的銷售利潤為,求銷售單價為多少元時,每天利潤最大?最大利潤是多少?26.如圖,已知反比例函數(shù)與一次函數(shù)的圖象在第一象限相交于點.(1)試確定這兩個函數(shù)的表達式;(2)求出這兩個函數(shù)圖象的另一個交點的坐標,并根據(jù)圖像寫出使反比例函數(shù)的值大于一次函數(shù)的值的取值范圍.

參考答案一、選擇題(每題4分,共48分)1、B【分析】根據(jù)等腰三角形的判定及性質和三角形的內(nèi)角和定理求出各角的度數(shù),逐一判斷即可.【詳解】解:∵,∴∠ABC=∠ACB=72°,∠A=180°-∠ABC-∠ACB=36°,△ABC為等腰三角形∵是的角平分線∴∠ABD=∠CBD=∠ABC=36°∴∠BDC=180°-∠CBD-∠C=72°,∠ABD=∠A∴∠BDC=∠ACB,DA=DB,△DBC為等腰三角形∴BC=BD,△BCD為等腰三角形∵∴∠BED=∠BDE=(180°-∠ABD)=72°,△BEC為等腰三角形∴∠AED=180°-∠BED=108°∴∠EDA=180°-∠AED-∠A=36°∴∠EDA=∠A∴ED=EA,△EDA為等腰三角形共有5個等腰三角形故選B.【點睛】此題考查的是等腰三角形的判定及性質和三角形的內(nèi)角和,掌握等邊對等角、等角對等邊和三角形的內(nèi)角和定理是解決此題的關鍵.2、A【分析】通過計算判別式的值可判斷拋物線與軸的交點個數(shù).【詳解】由二次函數(shù),

∴.∴拋物線與軸有二個公共點.

故選:A.【點睛】本題考查了二次函數(shù)與一元二次方程之間的關系,拋物線與軸的交點個數(shù)取決于的值.3、D【解析】二次函數(shù)y=2(x+1)2-3的圖象開口向上,頂點坐標為(-1,-3),對稱軸為直線x=-1;當x=0時,y=-2,所以圖像與y軸的交點坐標是(0,-2);當x>-1時,y隨x的增大而增大,即拋物線在x>-1的部分是上升的,故選D.4、A【分析】直接利用一元二次方程中各部分的名稱分析得出答案.【詳解】解:5x1﹣1=﹣3x整理得:5x1+3x﹣1=0,則二次項系數(shù)、一次項系數(shù)、常數(shù)項分別是:5、3、﹣1.故選:A.【點睛】此題主要考查了一元二次方程的一般形式,正確認識各部分是解題關鍵.5、B【解析】根據(jù)圓周角定理可得∠ADC=2∠ABC=140°,故選B.6、D【分析】利用因式分解法解一元二次方程即可.【詳解】解:解得:故選D.【點睛】此題考查的是解一元二次方程,掌握用因式分解法解一元二次方程是解決此題的關鍵.7、D【分析】連接AO、BO、CO,根據(jù)中心角度數(shù)=360°÷邊數(shù)n,分別計算出∠AOC、∠BOC的度數(shù),根據(jù)角的和差則有∠AOB=30°,根據(jù)邊數(shù)n=360°÷中心角度數(shù)即可求解.【詳解】連接AO、BO、CO,∵AC是⊙O內(nèi)接正四邊形的一邊,∴∠AOC=360°÷4=90°,∵BC是⊙O內(nèi)接正六邊形的一邊,∴∠BOC=360°÷6=60°,∴∠AOB=∠AOC﹣∠BOC=90°﹣60°=30°,∴n=360°÷30°=12;故選:D.【點睛】本題考查正多邊形和圓,解題的關鍵是根據(jù)正方形的性質、正六邊形的性質求出中心角的度數(shù).8、A【分析】由BF∥AD,可得,再借助平行四邊形的性質把AD轉化為BC即可.【詳解】∵四邊形ABCD是平行四邊形,∴AD=BC,∵,∴.∵BF∥AD,∴=.故選A【點睛】本題主要考查平行四邊形的性質和平行線截線段成比例定理,掌握平行線截線段成比例定理是解題的關鍵.9、D【分析】分AB、CD在圓心的同側和異側兩種情況求得AB與CD的距離.構造直角三角形利用勾股定理求出即可.【詳解】當弦AB和CD在圓心同側時,如圖①,過點O作OF⊥CD,垂足為F,交AB于點E,連接OA,OC,∵AB∥CD,∴OE⊥AB,∵AB=8cm,CD=6cm,∴AE=4cm,CF=3cm,∵OA=OC=5cm,∴EO=3cm,OF=4cm,∴EF=OF-OE=1cm;當弦AB和CD在圓心異側時,如圖②,過點O作OE⊥AB于點E,反向延長OE交AD于點F,連接OA,OC,∵AB∥CD,∴OF⊥CD,∵AB=8cm,CD=6cm,∴AE=4cm,CF=3cm,∵OA=OC=5cm,∴EO=3cm,OF=4cm,∴EF=OF+OE=7cm.故選D.【點睛】本題考查了垂徑定理、勾股定理;熟練掌握垂徑定理和勾股定理,根據(jù)題意畫出圖形是解題的關鍵,要注意有兩種情況.10、A【分析】連接AG并延長交BC于H,如圖,利用三角形重心的性質得到AG=2GH,再證明△ADE∽△ABC,根據(jù)相似三角形的性質得到==,然后根據(jù)比例的性質得到△ADE與四邊形DBCE的面積比.【詳解】解:連接AG并延長交BC于H,如圖,∵點G為△ABC的重心,∴AG=2GH,∴=,∵DE∥BC,∴△ADE∽△ABC,∴==()2=,∴△ADE與四邊形DBCE的面積比=.故選:A.【點睛】本題考查了三角形的重心與相似三角形的性質與判定.重心到頂點的距離與重心到對邊中點的距離之比為2∶1.11、C【解析】將(1,1)代入解析式中即可.【詳解】解:將點(1,1)代入解析式得,,k=1.故選:C.【點睛】此題考查的是求反比例系數(shù)解析式,掌握用待定系數(shù)法求反比例函數(shù)解析式是解決此題的關鍵.12、B【分析】根據(jù)題意作出合適的輔助線,然后利用銳角三角函數(shù)即可表示出AB的長.【詳解】解:作AD⊥BC于點D,則BD=+0.3=,∵cosα=,∴cosα=,解得,AB=米,故選B.【點睛】本題考查解直角三角形的應用、軸對稱圖形,解答本題的關鍵是明確題意,利用數(shù)形結合的思想解答.二、填空題(每題4分,共24分)13、1.【解析】試題解析:∵方程的兩根為故答案為1.點睛:一元二次方程的兩個根分別為14、1.【解析】根據(jù)題意,易得△MBA∽△MCO,根據(jù)相似三角形的性質可知,即,解得AM=1.∴小明的影長為1米.15、【分析】根據(jù)菱形的對稱性,在AB上找到點P關于BD的對稱點,過點作Q⊥CD于Q,交BD于點K,連接PK,過點A作AE⊥CD于E,根據(jù)垂線段最短和平行線之間的距離處處相等,可得此時最小,且最小值為的長,,然后利用銳角三角函數(shù)求AE即可.【詳解】解:根據(jù)菱形的對稱性,在AB上找到點P關于BD的對稱點,過點作Q⊥CD于Q,交BD于點K,連接PK,過點A作AE⊥CD于E根據(jù)對稱性可知:PK=K,∴此時=,根據(jù)垂線段最短和平行線之間的距離處處相等,∴此時最小,且最小值為的長,∵在菱形中,,∴,∠ADE=180°-∠A=60°在Rt△ADE中,AE=AD·sin∠ADE=∴即的最小值為故答案為.【點睛】此題考查的是菱形的性質、求兩線段之和的最值問題和銳角三角函數(shù),掌握菱形的性質、垂線段最短、平行線之間的距離處處相等和用銳角三角函數(shù)解直角三角形是解決此題的關鍵.16、①③④【分析】根據(jù)題意分別求出兩個二次函數(shù)的解析式,根據(jù)函數(shù)的對稱軸判定①;令x=0,求出y2的值,比較判定②;觀察圖象,判定③;令y=3,求出A、B、C的橫坐標,然后求出AB、AC的長,判定④.【詳解】∵拋物線y1=a(x+2)2+m與拋物線y2=(x﹣3)2+n的對稱軸分別為x=-2,x=3,∴兩條拋物線的對稱軸距離為5,故①正確;∵拋物線y2=(x﹣3)2+n交于點A(1,3),∴2+n=3,即n=1;∴y2=(x﹣3)2+1,把x=0代入y2=(x﹣3)2+1得,y=≠5,②錯誤;由圖象可知,當x>3時,y1>y2,∴x>3時,y1﹣y2>0,③正確;∵拋物線y1=a(x+2)2+m過原點和點A(1,3),∴,解得,∴.令y1=3,則,解得x1=-5,x2=1,∴AB=1-(-5)=6,∴A(1,3),B(-5,3);令y2=3,則(x﹣3)2+1=3,解得x1=5,x2=1,∴C(5,3),∴AC=5-1=4,∴BC=10,∴y軸是線段BC的中垂線,故④正確.故答案為①③④.【點睛】本題考查了二次函數(shù)的性質,主要利用了待定系數(shù)法求二次函數(shù)解析式,已知函數(shù)值求自變量的值.17、【分析】根據(jù)扇形條件計算出扇形弧長,由此得到其所圍成的圓錐的底面圓周長,由圓的周長公式計算底面圓的半徑.【詳解】∵圓心角為150o,半徑為8∴扇形弧長:∴其圍成的圓錐的底面圓周長為:∴設底面圓半徑為則,得故答案為:.【點睛】本題考查了扇形弧長的計算,及扇形與圓錐之間的對應關系,熟知以上內(nèi)容是解題的關鍵.18、x<?1或x>5.【分析】先利用拋物線的對稱性得到拋物線與x軸的另一個交點坐標為(-1,0),然后寫出拋物線在x軸下方所對應的自變量的范圍即可.【詳解】拋物線的對稱軸為直線x=2,而拋物線與x軸的一個交點坐標為(5,0),所以拋物線與x軸的另一個交點坐標為(?1,0),所以不等式?x2+bx+c<0的解集為x<?1或x>5.故答案為x<?1或x>5.考點:二次函數(shù)圖象的性質三、解答題(共78分)19、(1)詳見解析;(2)或;(3)【分析】(1)根據(jù)在“同圓或等圓中,同弧或等弧所對的圓周角相等”可得;(2)分兩種情況討論,當時,解直角三角形AFO可求得AF和OF的長,再解直角三角形EFC可得;當時,解直角三角形AFO可求得AF和OF的長,根據(jù)三角函數(shù)求解;(3)由邊邊邊定理可證,再證,根據(jù)對應邊成比例求解.【詳解】解:(1)延長AO,CO分別交圓于點M,N為直徑弧AC=弧BD弧CD=弧AB(2)①當時②當時,,,綜上所述:或(3)連結,過點分別作于點,于點弧AC=弧BD弧CD=弧AB∴∴∵∴∵∴∴∵∴∵∴∵∴∵∴∴∴【點睛】本題考查圓周角定理,解直角三角形,相似三角形的判定與性質的綜合應用,根據(jù)條件選擇對應知識點且具有綜合能力是解答此題的關鍵.20、(1)85°;(2)小明家所在居民樓與大廈的距離CD的長度是40米.【分析】(1)結合圖形即可得出答案;(2)利用所給角的三角函數(shù)用CD表示出AD、BD;根據(jù)AB=AD+BD=74米,即可求得居民樓與大廈的距離.【詳解】解:(1)由圖知∠ACB=37°+48°=85°;(2)設CD=x米.在Rt△ACD中,tan37°=,則=,∴AD=x;在Rt△BCD中,tan48°=,則=,∴BD=x.∵AD+BD=AB,∴x+x=74,解得:x=40,答:小明家所在居民樓與大廈的距離CD的長度是40米.【點睛】本題考查的是解直角三角形的應用?仰角俯角問題,掌握仰角俯角的概念、熟記銳角三角函數(shù)的定義是解題的關鍵.21、(1)點,,的坐標分別為,,;(2)作圖見解析;(3),【分析】(1)分別作出點關于原點對稱點,,,然后根據(jù)平面直角坐標系即可寫出點,、的坐標;(2)連接、、即可;(3)根據(jù)對稱的性質即可得出結論.【詳解】解:(1)分別作點關于原點對稱點,,,如下圖所示,,,即為所求,由平面直角坐標系可知:點,,的坐標分別為,,;(2)連接、、,如圖所示,即為所求;(3)由對稱的性質可得到,.故答案為:;.【點睛】此題考查的是作已知圖形關于原點對稱的圖形和對稱的性質,掌握已知圖形關于原點對稱圖形的作法和對稱的性質是解決此題的關鍵.22、(1)證明見解析;(2)BP=1.【解析】分析:(1)連接OB,如圖,根據(jù)圓周角定理得到∠ABD=90°,再根據(jù)切線的性質得到∠OBC=90°,然后利用等量代換進行證明;(2)證明△AOP∽△ABD,然后利用相似比求BP的長.詳(1)證明:連接OB,如圖,∵AD是⊙O的直徑,∴∠ABD=90°,∴∠A+∠ADB=90°,∵BC為切線,∴OB⊥BC,∴∠OBC=90°,∴∠OBA+∠CBP=90°,而OA=OB,∴∠A=∠OBA,∴∠CBP=∠ADB;(2)解:∵OP⊥AD,∴∠POA=90°,∴∠P+∠A=90°,∴∠P=∠D,∴△AOP∽△ABD,∴,即,∴BP=1.點睛:本題考查了切線的性質:圓的切線垂直于經(jīng)過切點的半徑.若出現(xiàn)圓的切線,必連過切點的半徑,構造定理圖,得出垂直關系.也考查了圓周角定理和相似三角形的判定與性質.23、(1)x=1;(2)m=4【分析】(1)由頂點式即可得出該二次函數(shù)圖象的對稱軸;(2)利用二次函數(shù)的對稱性即可解決問題.【詳解】解:(1)∵,∴該二次函數(shù)圖象的對稱軸為:直線x=1,(2)∵該二次函數(shù)圖象的對稱軸為:直線x=1,∴A(0,4),B(2,m).是關于直線x=1成對稱,故m=4.【點睛】本題考查了二次函數(shù)的頂點式的性質,掌握頂點式的頂點坐標及對稱性是解題的關鍵.24、(1)答案見解析;(2).【分析】(1)把一條直尺邊與直

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論