




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
第2課時(shí)等式性質(zhì)與不等式性質(zhì)【教學(xué)目標(biāo)】1.掌握不等式的性質(zhì).2.能利用不等式的性質(zhì)進(jìn)行數(shù)或式的大小比較或不等式的證明.3.通過類比等式與不等式的性質(zhì),探索兩者之間的共性與差異.4.通過不等式性質(zhì)的判斷與證明,培養(yǎng)邏輯推理能力.5.借助不等式性質(zhì)求范圍問題,提升數(shù)學(xué)運(yùn)算素養(yǎng).【教學(xué)重點(diǎn)】掌握不等式的性質(zhì).【教學(xué)難點(diǎn)】能利用不等式的性質(zhì)進(jìn)行數(shù)或式的大小比較或不等式的證明.【教學(xué)過程】新知初探1.等式的性質(zhì)(1)性質(zhì)1如果a=b,那么b=a;(2)性質(zhì)2如果a=b,b=c,那么a=c;(3)性質(zhì)3如果a=b,那么a±c=b±c;(4)性質(zhì)4如果a=b,那么ac=bc;(5)性質(zhì)5如果a=b,c≠0,那么eq\f(a,c)=eq\f(b,c).2.不等式的基本性質(zhì)(1)對(duì)稱性:a>b?b<a.(2)傳遞性:a>b,b>c?a>c.(3)可加性:a>b?a+c>b+c.(4)可乘性:a>b,c>0?ac>bc;a>b,c<0?ac<bc.(5)加法法則:a>b,c>d?a+c>b+d.(6)乘法法則:a>b>0,c>d>0?ac>bd.(7)乘方法則:a>b>0?an>bn>0(n∈N,n≥2).初試身手1.若a>b,c>d,則下列不等關(guān)系中不一定成立的是()A.a(chǎn)-b>d-c B.a(chǎn)+d>b+cC.a(chǎn)-c>b-c D.a(chǎn)-c<a-dB[根據(jù)不等式的性質(zhì).]2.與a>b等價(jià)的不等式是()A.|a|>|b| B.a(chǎn)2>b2\f(a,b)>1 D.a(chǎn)3>b3D[可利用賦值法.令a=-5,b=0,則A、B正確而不滿足a>b.再令a=-3,b=-1,則C正確而不滿足a>b,故選D.]3.設(shè)x<a<0,則下列不等式一定成立的是()A.x2<ax<a2 B.x2>ax>a2C.x2<a2<ax D.x2>a2>axB[∵x<a<0,∴x2>a2.∵x2-ax=x(x-a)>0,∴x2>ax.又ax-a2=a(x-a)>0,∴ax>a2.∴x2>ax>a2.]例題講解【例1】對(duì)于實(shí)數(shù)a,b,c下列命題中的真命題是()A.若a>b,則ac2>bc2B.若a>b>0,則eq\f(1,a)>eq\f(1,b)C.若a<b<0,則eq\f(b,a)>eq\f(a,b)D.若a>b,eq\f(1,a)>eq\f(1,b),則a>0,b<0[思路點(diǎn)撥]本題可以利用不等式的性質(zhì)直接判斷命題的真假,也可以采用特殊值法判斷.D[法一:∵c2≥0,∴c=0時(shí),有ac2=bc2,故A為假命題;由a>b>0,有ab>0?eq\f(a,ab)>eq\f(b,ab)?eq\f(1,b)>eq\f(1,a),故B為假命題;eq\b\lc\\rc\}(\a\vs4\al\co1(a<b<0?-a>-b>0?-\f(1,b)>-\f(1,a)>0,a<b<0?-a>-b>0))?eq\f(a,b)>eq\f(b,a),故C為假命題;eq\b\lc\\rc\}(\a\vs4\al\co1(a>b?b-a<0,\f(1,a)>\f(1,b)?\f(1,a)-\f(1,b)>0?\f(b-a,ab)>0))ab<0.∵a>b,∴a>0且b<0,故D為真命題.法二:特殊值排除法.取c=0,則ac2=bc2,故A錯(cuò).取a=2,b=1,則eq\f(1,a)=eq\f(1,2),eq\f(1,b)=1.有eq\f(1,a)<eq\f(1,b),故B錯(cuò).取a=-2,b=-1,則eq\f(b,a)=eq\f(1,2),eq\f(a,b)=2,有eq\f(b,a)<eq\f(a,b),故C錯(cuò).]方法總結(jié)運(yùn)用不等式的性質(zhì)判斷時(shí),要注意不等式成立的條件,不要弱化條件,尤其是不能憑想當(dāng)然隨意捏造性質(zhì).解有關(guān)不等式選擇題時(shí),也可采用特殊值法進(jìn)行排除,注意取值一定要遵循如下原則:一是滿足題設(shè)條件;二是取值要簡(jiǎn)單,便于驗(yàn)證計(jì)算.課堂練習(xí)1.下列命題正確的是()A.若a2>b2,則a>bB.若eq\f(1,a)>eq\f(1,b),則a<bC.若ac>bc,則a>bD.若eq\r(a)<eq\r(b),則a<bD[A錯(cuò),例如(-3)2>22;B錯(cuò),例如eq\f(1,2)>eq\f(1,-3);C錯(cuò),例如當(dāng)c=-2,a=-3,b=2時(shí),有ac>bc,但a<b.]利用不等式性質(zhì)證明簡(jiǎn)單不等式【例2】若a>b>0,c<d<0,e<0,求證:eq\f(e,a-c2)>eq\f(e,b-d2).[思路點(diǎn)撥]可結(jié)合不等式的基本性質(zhì),分析所證不等式的結(jié)構(gòu),有理有據(jù)地導(dǎo)出證明結(jié)果.[證明]∵c<d<0,∴-c>-d>0.又∵a>b>0,∴a-c>b-d>0.∴(a-c)2>(b-d)2>0.兩邊同乘以eq\f(1,a-c2b-d2),得eq\f(1,a-c2)<eq\f(1,b-d2).又e<0,∴eq\f(e,a-c2)>eq\f(e,b-d2).方法總結(jié)利用不等式的性質(zhì)證明不等式注意事項(xiàng)1利用不等式的性質(zhì)及其推論可以證明一些不等式.解決此類問題一定要在理解的基礎(chǔ)上,記準(zhǔn)、記熟不等式的性質(zhì)并注意在解題中靈活準(zhǔn)確地加以應(yīng)用.2應(yīng)用不等式的性質(zhì)進(jìn)行推導(dǎo)時(shí),應(yīng)注意緊扣不等式的性質(zhì)成立的條件,且不可省略條件或跳步推導(dǎo),更不能隨意構(gòu)造性質(zhì)與法則.課堂練習(xí)2.已知a>b,e>f,c>0,求證:f-ac<e-bc.[證明]∵a>b,c>0,∴ac>bc.又∵e>f,∴e+ac>f+bc,∴e-bc>f-ac,∴f-ac<e-bc.【例3】已知1<a<4,2<b<8,試求a-b與eq\f(a,b)的取值范圍.[思路點(diǎn)撥]依據(jù)不等式的性質(zhì),找到-b與eq\f(1,b)的范圍,進(jìn)而求出a-b與eq\f(a,b)的取值范圍.[解]因?yàn)?<a<4,2<b<8,所以-8<-b<-2.所以1-8<a-b<4-2,即-7<a-b<2.又因?yàn)閑q\f(1,8)<eq\f(1,b)<eq\f(1,2),所以eq\f(1,8)<eq\f(a,b)<eq\f(4,2)=2,即eq\f(1,8)<eq\f(a,b)<2.方法總結(jié)求含字母的數(shù)或式子的取值范圍時(shí),一要注意題設(shè)中的條件,二要正確使用不等式的性質(zhì),尤其是兩個(gè)同方向的不等式可加不可減,可乘不可除.課堂練習(xí)3.已知-eq\f(π,2)≤α<β≤eq\f(π,2),求eq\f(α+β,2),eq\f(α-β,2)的取值范圍.[解]∵已知-eq\f(π,2)≤α<β≤eq\f(π,2),∴-eq\f(π,4)≤eq\f(α,2)<eq\f(π,4),-eq\f(π,4)<eq\f(β,2)≤eq\f(π,4),兩式相加,得-eq\f(π,2)<eq\f(α+β,2)<eq\f(π,2).∵-eq\f(π,4)<eq\f(β,2)≤eq\f(π,4).∴-eq\f(π,4)≤-eq\f(β,2)<eq\f(π,4).∴-eq\f(π,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 餐飲企業(yè)加盟合同范本:包含品牌使用權(quán)及培訓(xùn)
- 物業(yè)管理公司財(cái)務(wù)外包合同
- 施工方案編制聲明
- 電商代運(yùn)營及數(shù)據(jù)分析合作協(xié)議
- 成都市二手房買賣及產(chǎn)權(quán)過戶稅費(fèi)承擔(dān)及代理服務(wù)合同
- 出租車服務(wù)區(qū)域獨(dú)家經(jīng)營權(quán)承包合同
- 神經(jīng)外科帕金森病護(hù)理查房
- 焦化消防應(yīng)急預(yù)案方案
- 油費(fèi)管理方案模板(3篇)
- 2026版《全品高考》選考復(fù)習(xí)方案生物06 實(shí)驗(yàn)十七 探究等溫情況下一定質(zhì)量氣體壓強(qiáng)與體積的關(guān)系含答案
- 2024年中國沖擊波醫(yī)療器械市場(chǎng)調(diào)查研究報(bào)告
- 小學(xué)英語時(shí)態(tài)練習(xí)大全(附答案)-小學(xué)英語時(shí)態(tài)專項(xiàng)訓(xùn)練及答案
- 新課標(biāo)高一英語閱讀理解60篇
- DB15-T 3585-2024 高標(biāo)準(zhǔn)農(nóng)田施工質(zhì)量評(píng)定規(guī)程
- 2024年新人教版七年級(jí)數(shù)學(xué)下冊(cè)期末考試數(shù)學(xué)試卷-含答案
- 電氣設(shè)備-核電行業(yè)研究框架:成長性與穩(wěn)定性兼?zhèn)淇春煤穗娭虚L期價(jià)值
- 杭州浙江杭州市森林和野生動(dòng)物保護(hù)服務(wù)中心招聘編外聘用人員筆試歷年典型考題及考點(diǎn)附答案解析
- 【正版授權(quán)】 ISO 13408-2:2018 EN Aseptic processing of health care products - Part 2: Sterilizing filtration
- 氧氣吸入操作評(píng)分標(biāo)準(zhǔn)(中心供氧)
- 舌系帶短縮治療指南制定與更新
- 傳染病防控新技術(shù)應(yīng)用與評(píng)估
評(píng)論
0/150
提交評(píng)論