2023屆山東省龍口市蘭高鎮(zhèn)蘭高校數(shù)學九上期末學業(yè)水平測試試題含解析_第1頁
2023屆山東省龍口市蘭高鎮(zhèn)蘭高校數(shù)學九上期末學業(yè)水平測試試題含解析_第2頁
2023屆山東省龍口市蘭高鎮(zhèn)蘭高校數(shù)學九上期末學業(yè)水平測試試題含解析_第3頁
2023屆山東省龍口市蘭高鎮(zhèn)蘭高校數(shù)學九上期末學業(yè)水平測試試題含解析_第4頁
2023屆山東省龍口市蘭高鎮(zhèn)蘭高校數(shù)學九上期末學業(yè)水平測試試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題3分,共30分)1.下列圖形中既是中心對稱圖形又是軸對稱圖形的是()A. B. C. D.2.定義A*B,B*C,C*D,D*B分別對應圖形①、②、③、④:那么下列圖形中,可以表示A*D,A*C的分別是()A.(1),(2) B.(2),(4) C.(2),(3) D.(1),(4)3.如圖是二次函數(shù)y=ax2+bx+c的圖象,其對稱軸為x=1,下列結論:①abc>0;②2a+b=0;③4a+2b+c<0;④若(-32,y1),(103,y2)是拋物線上兩點,則y1<y2A.①② B.②③ C.②④ D.①③④4.如圖所示,CD∥AB,OE平分∠AOD,OF⊥OE,∠D=50°,則∠BOF為()A.35° B.30° C.25° D.20°5.在平行四邊形ABCD中,點E是邊AD上一點,且AE=2ED,EC交對角線BD于點F,則等于()A. B. C. D.6.下列四個物體的俯視圖與右邊給出視圖一致的是()A. B. C. D.7.已知2x=3y,則下列比例式成立的是()A. B. C. D.8.下列說法正確的是()A.了解飛行員視力的達標率應使用抽樣調查B.一組數(shù)據(jù)3,6,6,7,9的中位數(shù)是6C.從2000名學生中選200名學生進行抽樣調查,樣本容量為2000D.一組數(shù)據(jù)1,2,3,4,5的方差是109.已知關于x的一元二次方程x2+2x﹣a=0有兩個相等的實數(shù)根,則a的值是()A.1 B.﹣1 C. D.10.如圖,點D是等腰直角三角形ABC內一點,AB=AC,若將△ABD繞點A逆時針旋轉到△ACE的位置,則∠AED的度數(shù)為()A.25° B.30° C.40° D.45°二、填空題(每小題3分,共24分)11.如圖,在中,,點為的中點.將繞點逆時針旋轉得到,其中點的運動路徑為,則圖中陰影部分的面積為______.12.如圖,扇形OAB的圓心角為110°,C是上一點,則∠C=_____°.13.小剛身高,測得他站立在陽光下的影子長為,緊接著他把手臂豎直舉起,測得影子長為,那么小剛舉起的手臂超出頭頂?shù)母叨葹開_______.14.如圖,圓弧形拱橋的跨徑米,拱高米,則拱橋的半徑為__________米.15.如圖,E是?ABCD的BC邊的中點,BD與AE相交于F,則△ABF與四邊形ECDF的面積之比等于_____.16.有兩名學員小林和小明練習射擊,第一輪10槍打完后兩人打靶的環(huán)數(shù)如圖所示,通常新手的成績不太穩(wěn)定,那么根據(jù)圖中的信息,估計小林和小明兩人中新手是_______.17.西周時期,丞相周公旦設置過一種通過測定日影長度來確定時間的儀器,稱為圭表.如圖是一個根據(jù)北京的地理位置設計的圭表,其中,立柱高為.已知,冬至時北京的正午日光入射角約為,則立柱根部與圭表的冬至線的距離(即的長)為______.18.如圖,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,D是以點A為圓心2為半徑的圓上一點,連接BD,M為BD的中點,則線段CM長度的最小值為__________.三、解答題(共66分)19.(10分)如圖,四邊形內接于,對角線為的直徑,過點作的垂線交的延長線于點,過點作的切線,交于點.(1)求證:;(2)填空:①當?shù)亩葦?shù)為時,四邊形為正方形;②若,,則四邊形的最大面積是.20.(6分)如圖,在中,,是的平分線,是上一點,以為半徑的經過點.(1)求證:是切線;(2)若,,求的長.21.(6分)如圖,已知等邊△ABC,AB=1.以AB為直徑的半圓與BC邊交于點D,過點D作DF⊥AC,垂足為F,過點F作FG⊥AB,垂足為G,連結GD.(1)求證:DF是⊙O的切線;(2)求FG的長;(3)求△FDG的面積.22.(8分)解方程:(1)3x1-6x-1=0;(1)(x-1)1=(1x+1)1.23.(8分)某游樂園有一個直徑為16米的圓形噴水池,噴水池的周邊有一圈噴水頭,噴出的水柱為拋物線,在距水池中心3米處達到最高,高度為5米,且各方向噴出的水柱恰好在噴水池中心的裝飾物處匯合.如圖所示,以水平方向為x軸,噴水池中心為原點建立直角坐標系.(1)求水柱所在拋物線(第一象限部分)的函數(shù)表達式;(2)王師傅在噴水池內維修設備期間,噴水管意外噴水,為了不被淋濕,身高1.8米的王師傅站立時必須在離水池中心多少米以內?(3)經檢修評估,游樂園決定對噴水設施做如下設計改進:在噴出水柱的形狀不變的前提下,把水池的直徑擴大到32米,各方向噴出的水柱仍在噴水池中心保留的原裝飾物(高度不變)處匯合,請?zhí)骄繑U建改造后噴水池水柱的最大高度.24.(8分)已知,如圖,在△ABC中,∠C=90°,點D是AB外一點,過點D分別作邊AB、BC的垂線,垂足分別為點E、F,DF與AB交于點H,延長DE交BC于點G.求證:△DFG∽△BCA25.(10分)如圖,在平面直角坐標系中,△ABC的三個頂點都在格點上(每個小方格都是邊長為一個單位長度的正方形).(1)請畫出△ABC關于原點對稱的△A1B1C1;(1)請畫出△ABC繞點B逆時針旋轉90°后的△A1B1C1.26.(10分)如圖,四邊形OABC為平行四邊形,B、C在⊙O上,A在⊙O外,sin∠OCB=.(1)求證:AB與⊙O相切;(2)若BC=10cm,求圖中陰影部分的面積.

參考答案一、選擇題(每小題3分,共30分)1、C【解析】根據(jù)軸對稱圖形和中心對稱圖形的概念,對各個選項進行判斷,即可得到答案.【詳解】解:A、是軸對稱圖形,不是中心對稱圖形,故A錯誤;B、是軸對稱圖形,不是中心對稱圖形,故B錯誤;C、既是軸對稱圖形,也是中心對稱圖形,故C正確;D、既不是軸對稱圖形,也不是中心對稱圖形,故D錯誤;故選:C.【點睛】本題考查了軸對稱圖形和中心對稱圖形的概念,解題的關鍵是熟練掌握概念進行分析判斷.2、B【分析】先判斷出算式中A、B、C、D表示的圖形,然后再求解A*D,A*C.【詳解】∵A*B,B*C,C*D,D*B分別對應圖形①、②、③、④可得出A對應豎線、B對應大正方形、C對應橫線,D對應小正方形∴A*D為豎線和小正方形組合,即(2)A*C為豎線和橫線的組合,即(4)故選:B【點睛】本題考查歸納總結,解題關鍵是根據(jù)已知條件,得出A、B、C、D分別代表的圖形.3、C【解析】試題分析:根據(jù)題意可得:a<0,b>0,c>0,則abc<0,則①錯誤;根據(jù)對稱軸為x=1可得:-b2a=1,則-b=2a,即2a+b=0,則②正確;根據(jù)函數(shù)的軸對稱可得:當x=2時,y>0,即4a+2b+c>0,則③錯誤;對于開口向下的函數(shù),離對稱軸越近則函數(shù)值越大,則點睛:本題主要考查的就是二次函數(shù)的性質,屬于中等題.如果開口向上,則a>0,如果開口向下,則a<0;如果對稱軸在y軸左邊,則b的符號與a相同,如果對稱軸在y軸右邊,則b的符號與a相反;如果題目中出現(xiàn)2a+b和2a-b的時候,我們要看對稱軸與1或者-1的大小關系再進行判定;如果出現(xiàn)a+b+c,則看x=1時y的值;如果出現(xiàn)a-b+c,則看x=-1時y的值;如果出現(xiàn)4a+2b+c,則看x=2時y的值,以此類推;對于開口向上的函數(shù),離對稱軸越遠則函數(shù)值越大,對于開口向下的函數(shù),離對稱軸越近則函數(shù)值越大.4、C【解析】試題分析:CD∥AB,∠D=50°則∠BOD=50°.則∠DOA=180°-50°=130°.則OE平分∠AOD,∠EOD=65°.∵OF⊥OE,所以∠BOF=90°-65°=25°.選C.考點:平行線性質點評:本題難度較低,主要考查學生對平行線性質及角平分線性質的掌握.5、A【解析】試題分析:如圖,∵四邊形ABCD為平行四邊形,∴ED∥BC,BC=AD,∴△DEF∽△BCF,∴,設ED=k,則AE=2k,BC=3k,∴==,故選A.考點:1.相似三角形的判定與性質;2.平行四邊形的性質.6、C【詳解】解:幾何體的俯視圖為,故選C【點睛】本題考查由三視圖判斷幾何體,難度不大.7、C【分析】把各個選項依據(jù)比例的基本性質,兩內項之積等于兩外項之積,已知的比例式可以轉化為等積式2x=3y,即可判斷.【詳解】A.變成等積式是:xy=6,故錯誤;B.變成等積式是:3x+3y=4y,即3x=y,故錯誤;C.變成等積式是:2x=3y,故正確;D.變成等積式是:5x+5y=3x,即2x+5y=0,故錯誤.故選C.【點睛】本題考查了判斷兩個比例式是否能夠互化的方法,即轉化為等積式,判斷是否相同即可.8、B【解析】選項A,了解飛行員視力的達標率應使用全面調查,此選項錯誤;選項B,一組數(shù)據(jù)3,6,6,7,9的數(shù)的個數(shù)是奇數(shù),故中位數(shù)是處于中間位置的數(shù)6,此選項正確;選項C,從2000名學生中選200名學生進行抽樣調查,樣本容量應該是200,此選項錯誤;選項D,一組數(shù)據(jù)1,2,3,4,5的平均數(shù)=(1+2+3+4+5)=3,方差=[(1-3)2+(2-3)2+(3-3)2+(4-3)2+(5-3)2]=2,此選項錯誤.故答案選B.9、B【分析】根據(jù)關于x的一元二次方程x2+2x﹣a=0有兩個相等的實數(shù)根可知△=0,求出a的取值即可.【詳解】解:∵關于x的一元二次方程x2+2x﹣a=0有兩個相等的實數(shù)根,∴△=22+4a=0,解得a=﹣1.故選B.【點睛】本題考查一元二次方程根的判別式,熟記公式正確計算是本題的解題關鍵.10、D【分析】由題意可以判斷△ADE為等腰直角三角形,即可解決問題.【詳解】解:如圖,由旋轉變換的性質知:∠EAD=∠CAB,AE=AD;

∵△ABC為直角三角形,

∴∠CAB=90°,△ADE為等腰直角三角形,

∴∠AED=45°,

故選:D.【點睛】該題考查了旋轉變換的性質及其應用問題;應牢固掌握旋轉變換的性質.二、填空題(每小題3分,共24分)11、【分析】連接,設AC、DE交于點N,如圖,根據(jù)題意可得的度數(shù)和BM的長度,易證為的中位線,故MN可求,然后利用S陰影=S扇形MBE,代入相關數(shù)據(jù)求解即可.【詳解】解:連接,設AC、DE交于點N,如圖,由題意可知,,∴,∵,,且為的中點,∴為的中位線,∴,,∴S陰影=S扇形MBE.【點睛】本題考查了旋轉的性質、三角形的中位線定理、扇形面積的計算等知識,屬于??碱}型,熟練掌握旋轉的性質、將所求不規(guī)則圖形的面積轉化為規(guī)則圖形的面積的和差是解題的關鍵.12、1【分析】作所對的圓周角∠ADB,如圖,根據(jù)圓周角定理得到∠ADB=∠AOB=55°,然后利用圓內接四邊形的性質計算∠C的度數(shù).【詳解】解:作所對的圓周角∠ADB,如圖,∴∠ADB=∠AOB=×110°=55°,∵∠ADB+∠C=180°,∴∠C=180°﹣55°=1°.故答案為1.【點睛】本題考查了圓的綜合問題,掌握圓周角定理、圓內接四邊形的性質是解題的關鍵.13、0.5【分析】根據(jù)同一時刻身長和影長成比例,求出舉起手臂之后的身高,與身高做差即可解題.【詳解】解:設舉起手臂之后的身高為x由題可得:1.7:0.85=x:1.1,解得x=2.2,則小剛舉起的手臂超出頭頂?shù)母叨葹?.2-1.7=0.5m【點睛】本題考查了比例尺的實際應用,屬于簡單題,明確同一時刻的升高和影長是成比例的是解題關鍵.14、【解析】設圓心為O,半徑長為r米,根據(jù)垂徑定理可得AD=BD=6,則OD=(r-4),然后利用勾股定理在Rt△AOD中求解即可.【詳解】解:設圓心為O,半徑長為r米,可知AD=BD=6米,OD=(r-4)米在Rt△AOD中,根據(jù)勾股定理得:,解得r=6.5米,即半徑長為6.5米.故答案為6.5【點睛】本題考查了垂徑定理的應用,要熟練掌握勾股定理的性質,能夠運用到實際生活當中.15、【分析】△ABF和△ABE等高,先判斷出,進而算出,△ABF和△AFD等高,得,由,即可解出.【詳解】解:∵四邊形ABCD為平行四邊形,∴AD∥BC,AD=BC,又∵E是?ABCD的BC邊的中點,∴,∵△ABE和△ABF同高,∴,∴S△ABE=S△ABF,設?ABCD中,BC邊上的高為h,∵S△ABE=×BE×h,S?ABCD=BC×h=2×BE×h,∴S?ABCD=4S△ABE=4×S△ABF=6S△ABF,∵△ABF與△ADF等高,∴,∴S△ADF=2S△ABF,∴S四邊形ECDF=S?ABCD﹣S△ABE﹣S△ADF=S△ABF,∴,故答案為:.【點睛】本題考查了相似三角的面積類題型,運用了線段成比例求面積之間的比值,靈活運用線段比是解決本題的關鍵.16、小林【詳解】觀察圖形可知,小林的成績波動比較大,故小林是新手.

故答案是:小林.17、【分析】直接根據(jù)正切的定義求解即可.【詳解】在Rt△ABC中,約為,高為,∵tan∠ABC=,∴BC=m.故答案為:.【點睛】本題考查了解直角三角形的應用,解決此問題的關鍵在于正確理解題意得基礎上建立數(shù)學模型,把實際問題轉化為數(shù)學問題.18、【分析】作AB的中點E,連接EM,CE,AD根據(jù)三角形中位線的性質和直角三角形斜邊中線等于斜邊一半求出EM和CE長,再根據(jù)三角形的三邊關系確定CM長度的范圍,從而確定CM的最小值.【詳解】解:如圖,取AB的中點E,連接CE,ME,AD,∵E是AB的中點,M是BD的中點,AD=2,∴EM為△BAD的中位線,∴,在Rt△ACB中,AC=4,BC=3,由勾股定理得,AB=∵CE為Rt△ACB斜邊的中線,∴,在△CEM中,,即,∴CM的最大值為.故答案為:.【點睛】本題考查了圓的性質,直角三角形的性質及中位線的性質,利用三角形三邊關系確定線段的最值問題,構造一個以CM為邊,另兩邊為定值的的三角形是解答此題的關鍵和難點.三、解答題(共66分)19、(1)證明見解析;(2)①;②1.【分析】(1)根據(jù)已知條件得到CE是的切線.根據(jù)切線的性質得到DF=CF,由圓周角定理得到∠ADC=10°,于是得到結論;(2)①連接OD,根據(jù)圓周角定理和正方形的判定定理即可得到結論;②根據(jù)圓周角定理得到∠ADC=∠ABC=10°,根據(jù)勾股定理得到根據(jù)三角形的面積公式即可得到結論.【詳解】(1)證明:∵是的直徑,,∴是的切線.又∵是的切線,且交于點,∴,∴,∵是的直徑,∴,∴,,∴,∴,∴.(2)解:①當∠ACD的度數(shù)為45°時,四邊形ODFC為正方形;理由:連接OD,∵AC為的直徑,∴∠ADC=10°,∵∠ACD=45°,∴∠DAC=45°,∴∠DOC=10°,∴∠DOC=∠ODF=∠OCF=10°,.∵OD=OC,∴四邊形ODFC為正方形;故答案為:45°②四邊形ABCD的最大面積是1,理由:∵AC為的直徑,∴∠ADC=∠ABC=10°,∵AD=4,DC=2,∴,∴要使四邊形ABCD的面積最大,則△ABC的面積最大,∴當△ABC是等腰直角三角形時,△ABC的面積最大,∴四邊形ABCD的最大面積:故答案為:1【點睛】本題以圓為載體,考查了圓的切線的性質、平行線的判定、平行四邊形的性質、直角三角形全等的判定和45°角的直角三角形的性質,涉及的知識點多,熟練掌握相關知識是解題的關鍵.20、(1)證明見解析;(2).【分析】(1)如圖,連接OD.欲證BC是⊙O切線,只需證明OD⊥BC即可.(2)過點D作DE⊥AB,根據(jù)角平分線的性質可知CD=DE=3,由勾股定理得到BE的長,再通過設未知數(shù)利用勾股定理得出AC的長.【詳解】(1)證明:如解圖1所示,連接.平分.,,,,,,,是的切線;(2)如解圖2,過作于,又平分,,,,,在中,,由勾股定理,得,設,則,在中,則由勾股定理,得:,解得:,的長為.【點睛】本題綜合性較強,既考查了切線的判定,要證某線是圓的切線,已知此線過圓上某點,連接圓心與這點(即為半徑),再證垂直即可.同時考查了角平分線的性質,勾股定理.21、(1)詳見解析;(2);(3)【分析】(1)如圖所示,連接OD.由題意可知∠A=∠B=∠C=60°,則OD=OB,可以證明△OBD為等邊三角形,易得∠C=∠ODB=60°,再運用平行線的性質和判定以及等量代換即可完成解答.(2)先說明OD為△ABC的中位線,得到BD=CD=6.在Rt△CDF中,由∠C=60°,得∠CDF=30°,根據(jù)含30度的直角三角形三邊的關系得CF=CD,則AF=AC-CF=2,最后在Rt△AFG中,根據(jù)正弦的定義即可解答;(3)作DH⊥FG,CD=6,CF=3,DF=3,FH=,DH=,最后根據(jù)三角形的面積公式解答即可.【詳解】解:(1)如圖所示,連接OD.∵△ABC是等邊三角形,∴∠A=∠B=∠C=60°∵OD=OB∴△OBD為等邊三角形,∴∠C=∠ODB=60°,∴AC∥OD,∴∠CFD=∠FDO,∵DF⊥AC,∴∠CFD=∠FDO=20°,∴DF是⊙O的切線(2)因為點O是AB的中點,則OD是△ABC的中位線.∵△ABC是等邊三角形,AB=1,∴AB=AC=BC=1,CD=BD=BC=6∵∠C=60°,∠CFD=20°,∴∠CDF=30°,同理可得∠AFG=30°,∴CF=CD=3∴AF=1-3=2.∴.(3)作DH⊥FG,CD=6,CF=3,DF=3∴FH=,DH=∴△FDG的面積為DHFG=【點睛】本題考查了切線的性質、等邊三角形的性質以及解直角三角形等知識,連接圓心與切點的半徑是解決問題的常用方法.22、(1)x1=1+,x1=1-;(1)x1=,x1=-3【分析】(1)利用配方法解方程即可;

(1)先移項,然后利用因式分解法解方程.【詳解】(1)解:x1-1x=x1-1x+1=+1(x-1)1=x-1=±∴x1=1+,x1=1-(1)解:[(x-1)+(1x+1)][(x-1)-(1x+1)]=0(3x-1)(-x-3)=0∴x1=,x1=-3【點睛】本題考查了解一元二次方程的應用,能靈活運用各種方法解一元二次方程是解題的關鍵.23、(1)水柱所在拋物線(第一象限部分)的函數(shù)表達式為y=﹣(x﹣3)2+5(0<x<8);(2)為了不被淋濕,身高1.8米的王師傅站立時必須在離水池中心7米以內;(3)擴建改造后噴水池水柱的最大高度為米.【解析】分析:(1)根據(jù)頂點坐標可設二次函數(shù)的頂點式,代入點(8,0),求出a值,此題得解;(2)利用二次函數(shù)圖象上點的坐標特征,求出當y=1.8時x的值,由此即可得出結論;(3)利用二次函數(shù)圖象上點的坐標特征可求出拋物線與y軸的交點坐標,由拋物線的形狀不變可設改造后水柱所在拋物線(第一象限部分)的函數(shù)表達式為y=﹣x2+bx+,代入點(16,0)可求出b值,再利用配方法將二次函數(shù)表達式變形為頂點式,即可得出結論.詳解:(1)設水柱所在拋物線(第一象限部分)的函數(shù)表達式為y=a(x﹣3)2+5(a≠0),將(8,0)代入y=a(x﹣3)2+5,得:25a+5=0,解得:a=﹣,∴水柱所在拋物線(第一象限部分)的函數(shù)表達式為y=﹣(x﹣3)2+5(0<x<8).(2)當y=1.8時,有﹣(x﹣3)2+5=1.8,解得:x1=﹣1,x2=7,∴為了不被淋濕,身高1.8米的王師傅站立時必須在離水池中心7米以內.(3)當x=0時,y=﹣(x﹣3)2+5=.設改造后水柱所在拋物線(第一象限部分)的函數(shù)表達式為y=﹣x2+bx+.∵該函數(shù)圖象過點(16,0),∴0=﹣×162+16b+,解得:b=3,∴改造后水柱所在拋物線(第一象限部分)的函數(shù)表達式為y=﹣x2+3x+=﹣(x﹣)2+,∴擴建改造

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論