下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
統(tǒng)計學(xué)習(xí)的模型與操作一、預(yù)測變量為連續(xù)型數(shù)值變量讀入數(shù)據(jù):rm(list=ls())setwd作工作\\課程\\經(jīng)管軟件應(yīng)用\2016")install.packages("mboost")library("mboost")data("bodyfat",package="TH.data")str(bodyfat)write.table(bodyfat,file="bodyfat.csv",s=FALSE)數(shù)據(jù)結(jié)構(gòu)及描述性統(tǒng)計Str(bodyfat)Summary(bodyfat)將數(shù)據(jù)集分為訓(xùn)練集和測試集set.seed(1234)ind=sample(2,nrow(bodyfat),replace=TRUE,prob=c(0.7,0.3))bodyfat_train=bodyfat[ind==1,]bodyfat_test=bodyfat[ind==2,]對測試集進行廣義線性模性預(yù)測###構(gòu)建廣義線性模性myformula=DEXfat~age+waistcirc+hipcirc+elbowbreadth+kneebreadthbodyfat.glm=glm(myformula,data=bodyfat_train,family=gaussian("log"))summary(bodyfat.glm)###繪圖,比較觀測值與預(yù)測值library(ggplot2)###訓(xùn)練集中的觀測值與預(yù)測值。p=qplot(bodyfat_train$DEXfat,pred1,colour="red",geom=c("point"))p=p+geom_abline(intercept=0,slope=1,colour="blue")p###測試集中的觀測值與預(yù)測值pred2=predict(bodyfat.glm,newdata=bodyfat_test,type="response")p=qplot(bodyfat_test$DEXfat,pred2,colour=I("green"),geom=c("point"))p=p+geom_abline(intercept=0,slope=1,colour="blue")+ggtitle(‘測試集的觀測值與預(yù)測值(廣義線性模型)")p###測試集中的預(yù)測總誤差。error1=sum((pred2-bodyfat_test$DEXfat)A2)###測試集中的均方根誤差RMS1=sqrt(mean((pred2-bodyfat_test$DEXfat)A2))對測試集進行決策樹分析###構(gòu)建決策樹模型library(rpart.plot)library(rpart)bodyfat.rpart=rpart(myformula,data=bodyfat_train,control=rpart.control(minsplit=10))summary(bodyfat.rpart)###繪制決策樹模型圖plot(bodyfat.rpart,uniform=TRUE)text(bodyfat.rpart,use.n=T)prp(bodyfat.rpart)###測試集中的觀測值與預(yù)測值pred3=predict(bodyfat.rpart,newdata=bodyfat_test)p=qplot(bodyfat_test$DEXfat,pred2,colour=I("green"),geom=c("point"))p=p+geom_abline(intercept=0,slope=1,colour="blue")+ggtitle(‘測試集的觀測值與預(yù)測值(決策樹模型)")p###模型預(yù)測能力評價error2=sum((pred3-bodyfat_test$DEXfat)A2)RMS2=sqrt(mean((pred3-bodyfat_test$DEXfat)A2))對預(yù)測集進行隨機森林分析###隨機森林library(randomForest)bodyfat.ren=randomForest(myformula,data=bodyfat_train)summary(bodyfat.ren)pred4=predict(bodyfat.ren,newdata=bodyfat_test)error3=sum((pred4-bodyfat_test$DEXfat)A2)RMS3=sqrt(mean((pred4-bodyfat_test$DEXfat)A2))p=qplot(bodyfat_test$DEXfat,pred4,colour=I("red"),geom=c("point"))p=p+geom_abline(intercept=0,slope=1,colour="blue")+ggtitle(‘測試集的觀測值與預(yù)測值(隨機森林模型)")p二、預(yù)測變量為二分式分類變量rm(list=ls())setwd("E:\\E\\yang\\工作\\課程\\經(jīng)管軟件應(yīng)用\\2016")#Readinthedatacensus=read.csv("census.csv")str(census)head(census)#splitdata(兩個函數(shù),caTools包中的sample.split函數(shù),或者base包中的sample函數(shù))library(caTools)set.seed(2000)spl=sample.split(census$over50k,SplitRatio=0.6)train=subset(census,spl==TRUE)test=subset(census,spl==FALSE)set.seed(2000)ind=sample(2,nrow(census),replace=TRUE,prob=c(0.6,0.4))train1=census[ind==1,]summary(train)summary(train1)#logit(logit模型預(yù)測和分析)trainlogit=glm(over50k~.,data=train,family="binomial")summary(trainlogit)#predictionlogitpre=predict(trainlogit,newdata=test,type="response")A1=table(test$over50k,logitpre>0.5)sum(diag(A1))/nrow(test)table(test$over50k)#auclibrary(ROCR)ROCRpredTest=prediction(logitpre,test$over50k)perf1=performance(ROCRpredTest,"tpr","fpr")plot(perf1)auc=as.numeric(performance(ROCRpredTest,"auc")@y.values)auc#treelibrary(rpart)library(rpart.plot)CARTcensus=rpart(over50k~.,data=train,method="class")prp(CARTcensus)cartpre=predict(CARTcensus,newdata=test,type="class")table(test$over50k,cartpre)predictTest=predict(CARTcensus,newdata=test)predictTest2=predictTest[,2]#ComputetheAUC:ROCRpred=prediction(predictTest2,test$over50k)perf2=performance(ROCRpred,"tpr","fpr")plot(perf2)as.numeric(performance(ROCRpred,"auc")@y.values)head(predictTest)A2=table(test$over50k,predictTest2>0.5)sum(diag(A2))/nrow(test)#RANDOMFORESTlibrary(randomForest)Forest=randomForest(over50k~.,data=train)forestpre=predict(Forest,newdata=test)A3=table(test$over50k,forestpre)sum(diag(A3))/nrow(test)#R
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 預(yù)算執(zhí)行反饋機制計劃
- 2024-2025學(xué)年年七年級數(shù)學(xué)人教版下冊專題整合復(fù)習(xí)卷28.1~28.2 階段性復(fù)習(xí)(含答案)-
- 持續(xù)反饋環(huán)節(jié)在生產(chǎn)計劃中的必要性
- 巖石礦物標(biāo)準(zhǔn)物質(zhì)相關(guān)行業(yè)投資方案
- 水泥運輸委托協(xié)議三篇
- 冷箱行業(yè)相關(guān)投資計劃提議
- 工程塑料尼龍系列相關(guān)行業(yè)投資規(guī)劃報告范本
- 再生資源倉庫管理方案計劃
- 跨部門合作的工作流程計劃
- 睡眠健康借款合同三篇
- 國開2024年秋《國際經(jīng)濟法》形考任務(wù)1-4答案
- 2023年山西大同平城區(qū)司法協(xié)理員招聘考試試題及答案
- 年加工3萬噸大米改建項目可行性實施報告
- 2024年車輛牌照租賃協(xié)議標(biāo)準(zhǔn)版本(四篇)
- 國家開放大學(xué)本科《當(dāng)代中國政治制度》期末紙質(zhì)考試總題庫2025珍藏版
- 《庖丁解?!?中職高一語文教與學(xué)同步課件(高教版2023基礎(chǔ)模塊上冊)
- 微信視頻號運營服務(wù)協(xié)議合同(2024版)
- 2025屆太原市重點中學(xué)九年級物理第一學(xué)期期末質(zhì)量檢測模擬試題含解析
- 滬教版小學(xué)牛津英語2a期末綜合復(fù)習(xí)試卷2(含聽力內(nèi)容)
- 2024CSCO結(jié)直腸癌診療指南解讀
- 幼兒園小小美食食譜播報員播報課件
評論
0/150
提交評論