2022屆廣西玉林市北流實(shí)驗(yàn)中學(xué)高三適應(yīng)性調(diào)研考試數(shù)學(xué)試題含解析_第1頁
2022屆廣西玉林市北流實(shí)驗(yàn)中學(xué)高三適應(yīng)性調(diào)研考試數(shù)學(xué)試題含解析_第2頁
2022屆廣西玉林市北流實(shí)驗(yàn)中學(xué)高三適應(yīng)性調(diào)研考試數(shù)學(xué)試題含解析_第3頁
2022屆廣西玉林市北流實(shí)驗(yàn)中學(xué)高三適應(yīng)性調(diào)研考試數(shù)學(xué)試題含解析_第4頁
2022屆廣西玉林市北流實(shí)驗(yàn)中學(xué)高三適應(yīng)性調(diào)研考試數(shù)學(xué)試題含解析_第5頁
免費(fèi)預(yù)覽已結(jié)束,剩余13頁可下載查看

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2021-2022高考數(shù)學(xué)模擬試卷考生請注意:1.答題前請將考場、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.某程序框圖如圖所示,若輸出的,則判斷框內(nèi)為()A. B. C. D.2.已知等差數(shù)列的前n項(xiàng)和為,,則A.3 B.4 C.5 D.63.若點(diǎn)是角的終邊上一點(diǎn),則()A. B. C. D.4.已知橢圓+=1(a>b>0)與直線交于A,B兩點(diǎn),焦點(diǎn)F(0,-c),其中c為半焦距,若△ABF是直角三角形,則該橢圓的離心率為()A. B. C. D.5.在中,角、、所對的邊分別為、、,若,則()A. B. C. D.6.設(shè),則關(guān)于的方程所表示的曲線是()A.長軸在軸上的橢圓 B.長軸在軸上的橢圓C.實(shí)軸在軸上的雙曲線 D.實(shí)軸在軸上的雙曲線7.設(shè)集合,,則集合A. B. C. D.8.已知復(fù)數(shù),其中為虛數(shù)單位,則()A. B. C.2 D.9.已知底面為邊長為的正方形,側(cè)棱長為的直四棱柱中,是上底面上的動(dòng)點(diǎn).給出以下四個(gè)結(jié)論中,正確的個(gè)數(shù)是()①與點(diǎn)距離為的點(diǎn)形成一條曲線,則該曲線的長度是;②若面,則與面所成角的正切值取值范圍是;③若,則在該四棱柱六個(gè)面上的正投影長度之和的最大值為.A. B. C. D.10.百年雙中的校訓(xùn)是“仁”、“智”、“雅”、“和”.在2019年5月18日的高三趣味運(yùn)動(dòng)會(huì)中有這樣的一個(gè)小游戲.袋子中有大小、形狀完全相同的四個(gè)小球,分別寫有“仁”、“智”、“雅”、“和”四個(gè)字,有放回地從中任意摸出一個(gè)小球,直到“仁”、“智”兩個(gè)字都摸到就停止摸球.小明同學(xué)用隨機(jī)模擬的方法恰好在第三次停止摸球的概率.利用電腦隨機(jī)產(chǎn)生1到4之間(含1和4)取整數(shù)值的隨機(jī)數(shù),分別用1,2,3,4代表“仁”、“智”、“雅”、“和”這四個(gè)字,以每三個(gè)隨機(jī)數(shù)為一組,表示摸球三次的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了以下20組隨機(jī)數(shù):141432341342234142243331112322342241244431233214344142134412由此可以估計(jì),恰好第三次就停止摸球的概率為()A. B. C. D.11.設(shè),則““是“”的()A.充分而不必要條件 B.必要而不充分條件C.充要條件 D.既不充分也不必條件12.已知為定義在上的奇函數(shù),若當(dāng)時(shí),(為實(shí)數(shù)),則關(guān)于的不等式的解集是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.展開式中項(xiàng)系數(shù)為160,則的值為______.14.在的展開式中,所有的奇數(shù)次冪項(xiàng)的系數(shù)和為-64,則實(shí)數(shù)的值為__________.15.執(zhí)行右邊的程序框圖,輸出的的值為.16.若,則的最小值為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸,且兩坐標(biāo)系取相同的長度單位.已知曲線的參數(shù)方程:(為參數(shù)),直線的極坐標(biāo)方程:(1)求曲線的極坐標(biāo)方程;(2)若直線與曲線交于、兩點(diǎn),求的最大值.18.(12分)在中,角所對的邊分別是,且.(1)求角的大小;(2)若,求邊長.19.(12分)某地在每周六的晚上8點(diǎn)到10點(diǎn)半舉行燈光展,燈光展涉及到10000盞燈,每盞燈在某一時(shí)刻亮燈的概率均為,并且是否亮燈彼此相互獨(dú)立.現(xiàn)統(tǒng)計(jì)了其中100盞燈在一場燈光展中亮燈的時(shí)長(單位:),得到下面的頻數(shù)表:亮燈時(shí)長/頻數(shù)1020402010以樣本中100盞燈的平均亮燈時(shí)長作為一盞燈的亮燈時(shí)長.(1)試估計(jì)的值;(2)設(shè)表示這10000盞燈在某一時(shí)刻亮燈的數(shù)目.①求的數(shù)學(xué)期望和方差;②若隨機(jī)變量滿足,則認(rèn)為.假設(shè)當(dāng)時(shí),燈光展處于最佳燈光亮度.試由此估計(jì),在一場燈光展中,處于最佳燈光亮度的時(shí)長(結(jié)果保留為整數(shù)).附:①某盞燈在某一時(shí)刻亮燈的概率等于亮燈時(shí)長與燈光展總時(shí)長的商;②若,則,,.20.(12分)已知函數(shù).(1)求函數(shù)的最小正周期以及單調(diào)遞增區(qū)間;(2)已知,若,,,求的面積.21.(12分)設(shè)函數(shù).(1)當(dāng)時(shí),求不等式的解集;(2)當(dāng)時(shí),求實(shí)數(shù)的取值范圍.22.(10分)在平面四邊形中,已知,.(1)若,求的面積;(2)若求的長.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.C【解析】程序在運(yùn)行過程中各變量值變化如下表:KS是否繼續(xù)循環(huán)循環(huán)前11第一圈24是第二圈311是第三圈426是第四圈557是第五圈6120否故退出循環(huán)的條件應(yīng)為k>5?本題選擇C選項(xiàng).點(diǎn)睛:使用循環(huán)結(jié)構(gòu)尋數(shù)時(shí),要明確數(shù)字的結(jié)構(gòu)特征,決定循環(huán)的終止條件與數(shù)的結(jié)構(gòu)特征的關(guān)系及循環(huán)次數(shù).尤其是統(tǒng)計(jì)數(shù)時(shí),注意要統(tǒng)計(jì)的數(shù)的出現(xiàn)次數(shù)與循環(huán)次數(shù)的區(qū)別.2.C【解析】

方法一:設(shè)等差數(shù)列的公差為,則,解得,所以.故選C.方法二:因?yàn)?,所以,則.故選C.3.A【解析】

根據(jù)三角函數(shù)的定義,求得,再由正弦的倍角公式,即可求解.【詳解】由題意,點(diǎn)是角的終邊上一點(diǎn),根據(jù)三角函數(shù)的定義,可得,則,故選A.【點(diǎn)睛】本題主要考查了三角函數(shù)的定義和正弦的倍角公式的化簡、求值,其中解答中根據(jù)三角函數(shù)的定義和正弦的倍角公式,準(zhǔn)確化簡、計(jì)算是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.4.A【解析】

聯(lián)立直線與橢圓方程求出交點(diǎn)A,B兩點(diǎn),利用平面向量垂直的坐標(biāo)表示得到關(guān)于的關(guān)系式,解方程求解即可.【詳解】聯(lián)立方程,解方程可得或,不妨設(shè)A(0,a),B(-b,0),由題意可知,·=0,因?yàn)?,,由平面向量垂直的坐?biāo)表示可得,,因?yàn)?,所以a2-c2=ac,兩邊同時(shí)除以可得,,解得e=或(舍去),所以該橢圓的離心率為.故選:A【點(diǎn)睛】本題考查橢圓方程及其性質(zhì)、離心率的求解、平面向量垂直的坐標(biāo)表示;考查運(yùn)算求解能力和知識(shí)遷移能力;利用平面向量垂直的坐標(biāo)表示得到關(guān)于的關(guān)系式是求解本題的關(guān)鍵;屬于中檔題、??碱}型.5.D【解析】

利用余弦定理角化邊整理可得結(jié)果.【詳解】由余弦定理得:,整理可得:,.故選:.【點(diǎn)睛】本題考查余弦定理邊角互化的應(yīng)用,屬于基礎(chǔ)題.6.C【解析】

根據(jù)條件,方程.即,結(jié)合雙曲線的標(biāo)準(zhǔn)方程的特征判斷曲線的類型.【詳解】解:∵k>1,∴1+k>0,k2-1>0,

方程,即,表示實(shí)軸在y軸上的雙曲線,

故選C.【點(diǎn)睛】本題考查雙曲線的標(biāo)準(zhǔn)方程的特征,依據(jù)條件把已知的曲線方程化為是關(guān)鍵.7.B【解析】

先求出集合和它的補(bǔ)集,然后求得集合的解集,最后取它們的交集得出結(jié)果.【詳解】對于集合A,,解得或,故.對于集合B,,解得.故.故選B.【點(diǎn)睛】本小題主要考查一元二次不等式的解法,考查對數(shù)不等式的解法,考查集合的補(bǔ)集和交集的運(yùn)算.對于有兩個(gè)根的一元二次不等式的解法是:先將二次項(xiàng)系數(shù)化為正數(shù),且不等號(hào)的另一邊化為,然后通過因式分解,求得對應(yīng)的一元二次方程的兩個(gè)根,再利用“大于在兩邊,小于在中間”來求得一元二次不等式的解集.8.D【解析】

把已知等式變形,然后利用數(shù)代數(shù)形式的乘除運(yùn)算化簡,再由復(fù)數(shù)模的公式計(jì)算得答案.【詳解】解:,則.故選:D.【點(diǎn)睛】本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)模的求法,是基礎(chǔ)題.9.C【解析】

①與點(diǎn)距離為的點(diǎn)形成以為圓心,半徑為的圓弧,利用弧長公式,可得結(jié)論;②當(dāng)在(或時(shí),與面所成角(或的正切值為最小,當(dāng)在時(shí),與面所成角的正切值為最大,可得正切值取值范圍是;③設(shè),,,則,即,可得在前后、左右、上下面上的正投影長,即可求出六個(gè)面上的正投影長度之和.【詳解】如圖:①錯(cuò)誤,因?yàn)?,與點(diǎn)距離為的點(diǎn)形成以為圓心,半徑為的圓弧,長度為;②正確,因?yàn)槊婷妫渣c(diǎn)必須在面對角線上運(yùn)動(dòng),當(dāng)在(或)時(shí),與面所成角(或)的正切值為最?。橄碌酌婷鎸蔷€的交點(diǎn)),當(dāng)在時(shí),與面所成角的正切值為最大,所以正切值取值范圍是;③正確,設(shè),則,即,在前后、左右、上下面上的正投影長分別為,,,所以六個(gè)面上的正投影長度之,當(dāng)且僅當(dāng)在時(shí)取等號(hào).故選:.【點(diǎn)睛】本題以命題的真假判斷為載體,考查了軌跡問題、線面角、正投影等知識(shí)點(diǎn),綜合性強(qiáng),屬于難題.10.A【解析】

由題意找出滿足恰好第三次就停止摸球的情況,用滿足恰好第三次就停止摸球的情況數(shù)比20即可得解.【詳解】由題意可知當(dāng)1,2同時(shí)出現(xiàn)時(shí)即停止摸球,則滿足恰好第三次就停止摸球的情況共有五種:142,112,241,142,412.則恰好第三次就停止摸球的概率為.故選:A.【點(diǎn)睛】本題考查了簡單隨機(jī)抽樣中隨機(jī)數(shù)的應(yīng)用和古典概型概率的計(jì)算,屬于基礎(chǔ)題.11.B【解析】

解出兩個(gè)不等式的解集,根據(jù)充分條件和必要條件的定義,即可得到本題答案.【詳解】由,得,又由,得,因?yàn)榧?,所以“”是“”的必要不充分條件.故選:B【點(diǎn)睛】本題主要考查必要不充分條件的判斷,其中涉及到絕對值不等式和一元二次不等式的解法.12.A【解析】

先根據(jù)奇函數(shù)求出m的值,然后結(jié)合單調(diào)性求解不等式.【詳解】據(jù)題意,得,得,所以當(dāng)時(shí),.分析知,函數(shù)在上為增函數(shù).又,所以.又,所以,所以,故選A.【點(diǎn)睛】本題主要考查函數(shù)的性質(zhì)應(yīng)用,側(cè)重考查數(shù)學(xué)抽象和數(shù)學(xué)運(yùn)算的核心素養(yǎng).二、填空題:本題共4小題,每小題5分,共20分。13.-2【解析】

表示該二項(xiàng)式的展開式的第r+1項(xiàng),令其指數(shù)為3,再代回原表達(dá)式構(gòu)建方程求得答案.【詳解】該二項(xiàng)式的展開式的第r+1項(xiàng)為令,所以,則故答案為:【點(diǎn)睛】本題考查由二項(xiàng)式指定項(xiàng)的系數(shù)求參數(shù),屬于簡單題.14.3或-1【解析】

設(shè),分別令、,兩式相減即可得,即可得解.【詳解】設(shè),令,則①,令,則②,則①-②得,則,解得或.故答案為:3或-1.【點(diǎn)睛】本題考查了二項(xiàng)式定理的應(yīng)用,考查了運(yùn)算能力,屬于中檔題.15.【解析】初始條件成立方;運(yùn)行第一次:成立;運(yùn)行第二次:不成立;輸出的值:結(jié)束所以答案應(yīng)填:考點(diǎn):1、程序框圖;2、定積分.16.【解析】

由基本不等式,可得到,然后利用,可得到最小值,要注意等號(hào)取得的條件。【詳解】由題意,,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,所以,當(dāng)且僅當(dāng)時(shí)取等號(hào),所以當(dāng)時(shí),取得最小值.【點(diǎn)睛】利用基本不等式求最值必須具備三個(gè)條件:①各項(xiàng)都是正數(shù);②和(或積)為定值;③等號(hào)取得的條件。三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1);(2)10【解析】

(1)消去參數(shù),可得曲線C的普通方程,再根據(jù)極坐標(biāo)與直角坐標(biāo)的互化公式,代入即可求得曲線C的極坐標(biāo)方程;(2)將代入曲線C的極坐標(biāo)方程,利用根與系數(shù)的關(guān)系,求得,進(jìn)而得到=,結(jié)合三角函數(shù)的性質(zhì),即可求解.【詳解】(1)由題意,曲線C的參數(shù)方程為,消去參數(shù),可得曲線C的普通方程為,即,又由,代入可得曲線C的極坐標(biāo)方程為.(2)將代入,得,即,所以=,其中,當(dāng)時(shí),取最大值,最大值為10.【點(diǎn)睛】本題主要考查了參數(shù)方程與普通方程,極坐標(biāo)方程與直角坐標(biāo)方程的互化,以及曲線的極坐標(biāo)方程的應(yīng)用,著重考查了運(yùn)算與求解能力,屬于中檔試題.18.(1);(2).【解析】

(1)把代入已知條件,得到關(guān)于的方程,得到的值,從而得到的值.(2)由(1)中得到的的值和已知條件,求出,再根據(jù)正弦定理求出邊長.【詳解】(1)因?yàn)?,,所以,,所以,?因?yàn)椋?,因?yàn)?,所?(2).在中,由正弦定理得,所以,解得.【點(diǎn)睛】本題考查三角函數(shù)公式的運(yùn)用,正弦定理解三角形,屬于簡單題.19.(1)(2)①,,②72【解析】

(1)將每組數(shù)據(jù)的組中值乘以對應(yīng)的頻率,然后再將結(jié)果相加即可得到亮燈時(shí)長的平均數(shù),將此平均數(shù)除以(個(gè)小時(shí)),即可得到的估計(jì)值;(2)①利用二項(xiàng)分布的均值與方差的計(jì)算公式進(jìn)行求解;②先根據(jù)條件計(jì)算出的取值范圍,然后根據(jù)并結(jié)合正態(tài)分布概率的對稱性,求解出在滿足取值范圍下對應(yīng)的概率.【詳解】(1)平均時(shí)間為(分鐘)∴(2)①∵,∴,②∵,,∴∵,,∴∴即最佳時(shí)間長度為72分鐘.【點(diǎn)睛】本題考查根據(jù)頻數(shù)分布表求解平均數(shù)、幾何概型(長度模型)、二項(xiàng)分布的均值與方差、正態(tài)分布的概率計(jì)算,屬于綜合性問題,難度一般.(1)如果,則;(2)計(jì)算正態(tài)分布中的概率,一定要活用正態(tài)分布圖象的對稱性對應(yīng)概率的對稱性.20.(1)最小正周期為,單調(diào)遞增區(qū)間為;(2).【解析】

(1)利用三角恒等變換思想化簡函數(shù)的解析式為,利用正弦型函數(shù)的周期公式可求得函數(shù)的最小正周期,解不等式可求得該函數(shù)的單調(diào)遞增區(qū)間;(2)由求得,由得出或,分兩種情況討論,結(jié)合余弦定理解三角形,進(jìn)行利用三角形的面積公式可求得的面積.【詳解】(1),所以,函數(shù)的最小正周期為,由得,因此,函數(shù)的單調(diào)遞增區(qū)間為;(2)由,得,或,或,,,又,,即.①當(dāng)時(shí),即,則由,,得,則,此時(shí),的面積為;②當(dāng)時(shí),則,即,則由,解得,,.綜上,的面積為.【點(diǎn)睛】本題考查正弦型函數(shù)的周期和單調(diào)區(qū)間的求解,同時(shí)也考查了三角形面積的計(jì)算,涉及余弦定理解三角形的應(yīng)用,考查計(jì)算能力,屬于中等題.21.(1)(2)當(dāng)時(shí),的取值范圍為;當(dāng)時(shí),的取值范圍為.【解析】

(1)當(dāng)時(shí),分類討論把不等式化為等價(jià)不等式組,即可求解.(2)由絕對值的三角不等式,可得,當(dāng)且僅當(dāng)時(shí),取“”,分類討論,即可求解.【詳解】(1)當(dāng)時(shí),,不等式可化為或或,解得不等式的解集為.(2)由絕對值的三角不等式,可得,當(dāng)且僅當(dāng)時(shí),取“”,所以當(dāng)時(shí),的取值范

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論