版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2021-2022高考數(shù)學(xué)模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù),若,使得,則實(shí)數(shù)的取值范圍是()A. B.C. D.2.若的內(nèi)角滿足,則的值為()A. B. C. D.3.已知變量的幾組取值如下表:12347若與線性相關(guān),且,則實(shí)數(shù)()A. B. C. D.4.已知正四面體的棱長(zhǎng)為,是該正四面體外接球球心,且,,則()A. B.C. D.5.設(shè)實(shí)數(shù)x,y滿足條件x+y-2?02x-y+3?0x-y?0則A.1 B.2 C.3 D.46.己知拋物線的焦點(diǎn)為,準(zhǔn)線為,點(diǎn)分別在拋物線上,且,直線交于點(diǎn),,垂足為,若的面積為,則到的距離為()A. B. C.8 D.67.設(shè),是方程的兩個(gè)不等實(shí)數(shù)根,記().下列兩個(gè)命題()①數(shù)列的任意一項(xiàng)都是正整數(shù);②數(shù)列存在某一項(xiàng)是5的倍數(shù).A.①正確,②錯(cuò)誤 B.①錯(cuò)誤,②正確C.①②都正確 D.①②都錯(cuò)誤8.已知函數(shù),若,,,則a,b,c的大小關(guān)系是()A. B. C. D.9.已知函數(shù),,若,對(duì)任意恒有,在區(qū)間上有且只有一個(gè)使,則的最大值為()A. B. C. D.10.已知雙曲線的左、右頂點(diǎn)分別為,點(diǎn)是雙曲線上與不重合的動(dòng)點(diǎn),若,則雙曲線的離心率為()A. B. C.4 D.211.已知函數(shù)是定義域?yàn)榈呐己瘮?shù),且滿足,當(dāng)時(shí),,則函數(shù)在區(qū)間上零點(diǎn)的個(gè)數(shù)為()A.9 B.10 C.18 D.2012.在條件下,目標(biāo)函數(shù)的最大值為40,則的最小值是()A. B. C. D.2二、填空題:本題共4小題,每小題5分,共20分。13.集合,,若是平面上正八邊形的頂點(diǎn)所構(gòu)成的集合,則下列說(shuō)法正確的為________①的值可以為2;②的值可以為;③的值可以為;14.的展開式中,的系數(shù)是______.15.設(shè),若函數(shù)有大于零的極值點(diǎn),則實(shí)數(shù)的取值范圍是_____16.工人在安裝一個(gè)正六邊形零件時(shí),需要固定如圖所示的六個(gè)位置的螺栓.若按一定順序?qū)⒚總€(gè)螺栓固定緊,但不能連續(xù)固定相鄰的2個(gè)螺栓.則不同的固定螺栓方式的種數(shù)是________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)曲線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為.(1)求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;(2)若直線與曲線,的交點(diǎn)分別為、(、異于原點(diǎn)),當(dāng)斜率時(shí),求的最小值.18.(12分)已知,分別是橢圓:的左,右焦點(diǎn),點(diǎn)在橢圓上,且拋物線的焦點(diǎn)是橢圓的一個(gè)焦點(diǎn).(1)求,的值:(2)過(guò)點(diǎn)作不與軸重合的直線,設(shè)與圓相交于A,B兩點(diǎn),且與橢圓相交于C,D兩點(diǎn),當(dāng)時(shí),求△的面積.19.(12分)某工廠生產(chǎn)某種電子產(chǎn)品,每件產(chǎn)品不合格的概率均為,現(xiàn)工廠為提高產(chǎn)品聲譽(yù),要求在交付用戶前每件產(chǎn)品都通過(guò)合格檢驗(yàn),已知該工廠的檢驗(yàn)儀器一次最多可檢驗(yàn)件該產(chǎn)品,且每件產(chǎn)品檢驗(yàn)合格與否相互獨(dú)立.若每件產(chǎn)品均檢驗(yàn)一次,所需檢驗(yàn)費(fèi)用較多,該工廠提出以下檢驗(yàn)方案:將產(chǎn)品每個(gè)一組進(jìn)行分組檢驗(yàn),如果某一組產(chǎn)品檢驗(yàn)合格,則說(shuō)明該組內(nèi)產(chǎn)品均合格,若檢驗(yàn)不合格,則說(shuō)明該組內(nèi)有不合格產(chǎn)品,再對(duì)該組內(nèi)每一件產(chǎn)品單獨(dú)進(jìn)行檢驗(yàn),如此,每一組產(chǎn)品只需檢驗(yàn)次或次.設(shè)該工廠生產(chǎn)件該產(chǎn)品,記每件產(chǎn)品的平均檢驗(yàn)次數(shù)為.(1)求的分布列及其期望;(2)(i)試說(shuō)明,當(dāng)越小時(shí),該方案越合理,即所需平均檢驗(yàn)次數(shù)越少;(ii)當(dāng)時(shí),求使該方案最合理時(shí)的值及件該產(chǎn)品的平均檢驗(yàn)次數(shù).20.(12分)已知橢圓的右焦點(diǎn)為,過(guò)作軸的垂線交橢圓于點(diǎn)(點(diǎn)在軸上方),斜率為的直線交橢圓于兩點(diǎn),過(guò)點(diǎn)作直線交橢圓于點(diǎn),且,直線交軸于點(diǎn).(1)設(shè)橢圓的離心率為,當(dāng)點(diǎn)為橢圓的右頂點(diǎn)時(shí),的坐標(biāo)為,求的值.(2)若橢圓的方程為,且,是否存在使得成立?如果存在,求出的值;如果不存在,請(qǐng)說(shuō)明理由.21.(12分)已知,,,,證明:(1);(2).22.(10分)已知函數(shù)(I)若討論的單調(diào)性;(Ⅱ)若,且對(duì)于函數(shù)的圖象上兩點(diǎn),存在,使得函數(shù)的圖象在處的切線.求證:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.C【解析】試題分析:由題意知,當(dāng)時(shí),由,當(dāng)且僅當(dāng)時(shí),即等號(hào)是成立,所以函數(shù)的最小值為,當(dāng)時(shí),為單調(diào)遞增函數(shù),所以,又因?yàn)?,使得,即在的最小值不小于在上的最小值,即,解得,故選C.考點(diǎn):函數(shù)的綜合問(wèn)題.【方法點(diǎn)晴】本題主要考查了函數(shù)的綜合問(wèn)題,其中解答中涉及到基本不等式求最值、函數(shù)的單調(diào)性及其應(yīng)用、全稱命題與存在命題的應(yīng)用等知識(shí)點(diǎn)的綜合考查,試題思維量大,屬于中檔試題,著重考查了學(xué)生分析問(wèn)題和解答問(wèn)題的能力,以及轉(zhuǎn)化與化歸思想的應(yīng)用,其中解答中轉(zhuǎn)化為在的最小值不小于在上的最小值是解答的關(guān)鍵.2.A【解析】
由,得到,得出,再結(jié)合三角函數(shù)的基本關(guān)系式,即可求解.【詳解】由題意,角滿足,則,又由角A是三角形的內(nèi)角,所以,所以,因?yàn)?,所?故選:A.【點(diǎn)睛】本題主要考查了正弦函數(shù)的性質(zhì),以及三角函數(shù)的基本關(guān)系式和正弦的倍角公式的化簡(jiǎn)、求值問(wèn)題,著重考查了推理與計(jì)算能力.3.B【解析】
求出,把坐標(biāo)代入方程可求得.【詳解】據(jù)題意,得,所以,所以.故選:B.【點(diǎn)睛】本題考查線性回歸直線方程,由性質(zhì)線性回歸直線一定過(guò)中心點(diǎn)可計(jì)算參數(shù)值.4.A【解析】
如圖設(shè)平面,球心在上,根據(jù)正四面體的性質(zhì)可得,根據(jù)平面向量的加法的幾何意義,重心的性質(zhì),結(jié)合已知求出的值.【詳解】如圖設(shè)平面,球心在上,由正四面體的性質(zhì)可得:三角形是正三角形,,,在直角三角形中,,,,,,因?yàn)闉橹匦模虼?,則,因此,因此,則,故選A.【點(diǎn)睛】本題考查了正四面體的性質(zhì),考查了平面向量加法的幾何意義,考查了重心的性質(zhì),屬于中檔題.5.C【解析】
畫出可行域和目標(biāo)函數(shù),根據(jù)目標(biāo)函數(shù)的幾何意義平移得到答案.【詳解】如圖所示:畫出可行域和目標(biāo)函數(shù),z=x+y+1,即y=-x+z-1,z表示直線在y軸的截距加上1,根據(jù)圖像知,當(dāng)x+y=2時(shí),且x∈-13,1時(shí),故選:C.【點(diǎn)睛】本題考查了線性規(guī)劃問(wèn)題,畫出圖像是解題的關(guān)鍵.6.D【解析】
作,垂足為,過(guò)點(diǎn)N作,垂足為G,設(shè),則,結(jié)合圖形可得,,從而可求出,進(jìn)而可求得,,由的面積即可求出,再結(jié)合為線段的中點(diǎn),即可求出到的距離.【詳解】如圖所示,作,垂足為,設(shè),由,得,則,.過(guò)點(diǎn)N作,垂足為G,則,,所以在中,,,所以,所以,在中,,所以,所以,,所以.解得,因?yàn)?,所以為線段的中點(diǎn),所以F到l的距離為.故選:D【點(diǎn)睛】本題主要考查拋物線的幾何性質(zhì)及平面幾何的有關(guān)知識(shí),屬于中檔題.7.A【解析】
利用韋達(dá)定理可得,,結(jié)合可推出,再計(jì)算出,,從而推出①正確;再利用遞推公式依次計(jì)算數(shù)列中的各項(xiàng),以此判斷②的正誤.【詳解】因?yàn)?是方程的兩個(gè)不等實(shí)數(shù)根,所以,,因?yàn)?所以,即當(dāng)時(shí),數(shù)列中的任一項(xiàng)都等于其前兩項(xiàng)之和,又,,所以,,,以此類推,即可知數(shù)列的任意一項(xiàng)都是正整數(shù),故①正確;若數(shù)列存在某一項(xiàng)是5的倍數(shù),則此項(xiàng)個(gè)位數(shù)字應(yīng)當(dāng)為0或5,由,,依次計(jì)算可知,數(shù)列中各項(xiàng)的個(gè)位數(shù)字以1,3,4,7,1,8,9,7,6,3,9,2為周期,故數(shù)列中不存在個(gè)位數(shù)字為0或5的項(xiàng),故②錯(cuò)誤;故選:A.【點(diǎn)睛】本題主要考查數(shù)列遞推公式的推導(dǎo),考查數(shù)列性質(zhì)的應(yīng)用,考查學(xué)生的綜合分析以及計(jì)算能力.8.D【解析】
根據(jù)題意,求出函數(shù)的導(dǎo)數(shù),由函數(shù)的導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系分析可得在上為增函數(shù),又由,分析可得答案.【詳解】解:根據(jù)題意,函數(shù),其導(dǎo)數(shù)函數(shù),則有在上恒成立,則在上為增函數(shù);又由,則;故選:.【點(diǎn)睛】本題考查函數(shù)的導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系,涉及函數(shù)單調(diào)性的性質(zhì),屬于基礎(chǔ)題.9.C【解析】
根據(jù)的零點(diǎn)和最值點(diǎn)列方程組,求得的表達(dá)式(用表示),根據(jù)在上有且只有一個(gè)最大值,求得的取值范圍,求得對(duì)應(yīng)的取值范圍,由為整數(shù)對(duì)的取值進(jìn)行驗(yàn)證,由此求得的最大值.【詳解】由題意知,則其中,.又在上有且只有一個(gè)最大值,所以,得,即,所以,又,因此.①當(dāng)時(shí),,此時(shí)取可使成立,當(dāng)時(shí),,所以當(dāng)或時(shí),都成立,舍去;②當(dāng)時(shí),,此時(shí)取可使成立,當(dāng)時(shí),,所以當(dāng)或時(shí),都成立,舍去;③當(dāng)時(shí),,此時(shí)取可使成立,當(dāng)時(shí),,所以當(dāng)時(shí),成立;綜上所得的最大值為.故選:C【點(diǎn)睛】本小題主要考查三角函數(shù)的零點(diǎn)和最值,考查三角函數(shù)的性質(zhì),考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,考查分類討論的數(shù)學(xué)思想方法,屬于中檔題.10.D【解析】
設(shè),,,根據(jù)可得①,再根據(jù)又②,由①②可得,化簡(jiǎn)可得,即可求出離心率.【詳解】解:設(shè),,,∵,∴,即,①又,②,由①②可得,∵,∴,∴,∴,即,故選:D.【點(diǎn)睛】本題考查雙曲線的方程和性質(zhì),考查了斜率的計(jì)算,離心率的求法,屬于基礎(chǔ)題和易錯(cuò)題.11.B【解析】
由已知可得函數(shù)f(x)的周期與對(duì)稱軸,函數(shù)F(x)=f(x)在區(qū)間上零點(diǎn)的個(gè)數(shù)等價(jià)于函數(shù)f(x)與g(x)圖象在上交點(diǎn)的個(gè)數(shù),作出函數(shù)f(x)與g(x)的圖象如圖,數(shù)形結(jié)合即可得到答案.【詳解】函數(shù)F(x)=f(x)在區(qū)間上零點(diǎn)的個(gè)數(shù)等價(jià)于函數(shù)f(x)與g(x)圖象在上交點(diǎn)的個(gè)數(shù),由f(x)=f(2﹣x),得函數(shù)f(x)圖象關(guān)于x=1對(duì)稱,∵f(x)為偶函數(shù),取x=x+2,可得f(x+2)=f(﹣x)=f(x),得函數(shù)周期為2.又∵當(dāng)x∈[0,1]時(shí),f(x)=x,且f(x)為偶函數(shù),∴當(dāng)x∈[﹣1,0]時(shí),f(x)=﹣x,g(x),作出函數(shù)f(x)與g(x)的圖象如圖:由圖可知,兩函數(shù)圖象共10個(gè)交點(diǎn),即函數(shù)F(x)=f(x)在區(qū)間上零點(diǎn)的個(gè)數(shù)為10.故選:B.【點(diǎn)睛】本題考查函數(shù)的零點(diǎn)與方程根的關(guān)系,考查數(shù)學(xué)轉(zhuǎn)化思想方法與數(shù)形結(jié)合的解題思想方法,屬于中檔題.12.B【解析】
畫出可行域和目標(biāo)函數(shù),根據(jù)平移得到最值點(diǎn),再利用均值不等式得到答案.【詳解】如圖所示,畫出可行域和目標(biāo)函數(shù),根據(jù)圖像知:當(dāng)時(shí),有最大值為,即,故..當(dāng),即時(shí)等號(hào)成立.故選:.【點(diǎn)睛】本題考查了線性規(guī)劃中根據(jù)最值求參數(shù),均值不等式,意在考查學(xué)生的綜合應(yīng)用能力.二、填空題:本題共4小題,每小題5分,共20分。13.②③【解析】
根據(jù)對(duì)稱性,只需研究第一象限的情況,計(jì)算:,得到,,得到答案.【詳解】如圖所示:根據(jù)對(duì)稱性,只需研究第一象限的情況,集合:,故,即或,集合:,是平面上正八邊形的頂點(diǎn)所構(gòu)成的集合,故所在的直線的傾斜角為,,故:,解得,此時(shí),,此時(shí).故答案為:②③.【點(diǎn)睛】本題考查了根據(jù)集合的交集求參數(shù),意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力,利用對(duì)稱性是解題的關(guān)鍵.14.【解析】
先將原式展開成,發(fā)現(xiàn)中不含,故只研究后面一項(xiàng)即可得解.【詳解】,依題意,只需求中的系數(shù),是.故答案為:-40【點(diǎn)睛】本題考查二項(xiàng)式定理性質(zhì),關(guān)鍵是先展開再利用排列組合思想解決,屬于基礎(chǔ)題.15.【解析】
先求導(dǎo)數(shù),求解導(dǎo)數(shù)為零的根,結(jié)合根的分布求解.【詳解】因?yàn)椋?,令得,因?yàn)楹瘮?shù)有大于0的極值點(diǎn),所以,即.【點(diǎn)睛】本題主要考查利用導(dǎo)數(shù)研究函數(shù)的極值點(diǎn)問(wèn)題,極值點(diǎn)為導(dǎo)數(shù)的變號(hào)零點(diǎn),側(cè)重考查轉(zhuǎn)化化歸思想.16.60【解析】分析:首先將選定第一個(gè)釘,總共有6種方法,假設(shè)選定1號(hào),之后分析第二步,第三步等,按照分類加法計(jì)數(shù)原理,可以求得共有10種方法,利用分步乘法計(jì)數(shù)原理,求得總共有種方法.詳解:根據(jù)題意,第一個(gè)可以從6個(gè)釘里任意選一個(gè),共有6種選擇方法,并且是機(jī)會(huì)相等的,若第一個(gè)選1號(hào)釘?shù)臅r(shí)候,第二個(gè)可以選3,4,5號(hào)釘,依次選下去,可以得到共有10種方法,所以總共有種方法,故答案是60.點(diǎn)睛:該題考查的是有關(guān)分類加法計(jì)數(shù)原理和分步乘法計(jì)數(shù)原理,在解題的過(guò)程中,需要逐個(gè)的將對(duì)應(yīng)的過(guò)程寫出來(lái),所以利用列舉法將對(duì)應(yīng)的結(jié)果列出,而對(duì)于第一個(gè)選哪個(gè)是機(jī)會(huì)均等的,從而用乘法運(yùn)算得到結(jié)果.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1)的極坐標(biāo)方程為;曲線的直角坐標(biāo)方程.(2)【解析】
(1)消去參數(shù),可得曲線的直角坐標(biāo)方程,再利用極坐標(biāo)與直角坐標(biāo)的互化,即可求解.(2)解法1:設(shè)直線的傾斜角為,把直線的參數(shù)方程代入曲線的普通坐標(biāo)方程,求得,再把直線的參數(shù)方程代入曲線的普通坐標(biāo)方程,得,得出,利用基本不等式,即可求解;解法2:設(shè)直線的極坐標(biāo)方程為,分別代入曲線,的極坐標(biāo)方程,得,,得出,即可基本不等式,即可求解.【詳解】(1)由題曲線的參數(shù)方程為(為參數(shù)),消去參數(shù),可得曲線的直角坐標(biāo)方程為,即,則曲線的極坐標(biāo)方程為,即,又因?yàn)榍€的極坐標(biāo)方程為,即,根據(jù),代入即可求解曲線的直角坐標(biāo)方程.(2)解法1:設(shè)直線的傾斜角為,則直線的參數(shù)方程為(為參數(shù),),把直線的參數(shù)方程代入曲線的普通坐標(biāo)方程得:,解得,,,把直線的參數(shù)方程代入曲線的普通坐標(biāo)方程得:,解得,,,,,即,,,,當(dāng)且僅當(dāng),即時(shí)取等號(hào),故的最小值為.解法2:設(shè)直線的極坐標(biāo)方程為),代入曲線的極坐標(biāo)方程,得,,把直線的參數(shù)方程代入曲線的極坐標(biāo)方程得:,,即,,曲線的參,即,,,,當(dāng)且僅當(dāng),即時(shí)取等號(hào),故的最小值為.【點(diǎn)睛】本題主要考查了參數(shù)方程與普通方程,以及極坐標(biāo)方程與直角坐標(biāo)方程點(diǎn)互化,以及直線參數(shù)方程的應(yīng)用和極坐標(biāo)方程的應(yīng)用,其中解答中熟記互化公式,合理應(yīng)用直線的參數(shù)方程中參數(shù)的幾何意義是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.18.(1);(2).【解析】
(1)由已知根據(jù)拋物線和橢圓的定義和性質(zhì),可求出,;(2)設(shè)直線方程為,聯(lián)立直線與圓的方程可以求出,再聯(lián)立直線和橢圓的方程化簡(jiǎn),由根與系數(shù)的關(guān)系得到結(jié)論,繼而求出面積.【詳解】(1)焦點(diǎn)為F(1,0),則F1(1,0),F(xiàn)2(1,0),,解得,=1,=1,(Ⅱ)由已知,可設(shè)直線方程為,,聯(lián)立得,易知△>0,則===因?yàn)?,所以?,解得聯(lián)立,得,△=8>0設(shè),則【點(diǎn)睛】本題主要考查拋物線和橢圓的定義與性質(zhì)應(yīng)用,同時(shí)考查利用根與系數(shù)的關(guān)系,解決直線與圓,直線與橢圓的位置關(guān)系問(wèn)題.意在考查學(xué)生的數(shù)學(xué)運(yùn)算能力.19.(1)見解析,(2)(i)見解析(ii)時(shí)平均檢驗(yàn)次數(shù)最少,約為594次.【解析】
(1)由題意可得,的可能取值為和,分別求出其概率即可求出分布列,進(jìn)而可求出期望.(2)(i)由記,根據(jù)函數(shù)的單調(diào)性即可證出;記,當(dāng)且取最小值時(shí),該方案最合理,對(duì)進(jìn)行賦值即可求解.【詳解】(1)由題,的可能取值為和,故的分布列為由記,因?yàn)椋栽谏蠁握{(diào)遞增,故越小,越小,即所需平均檢驗(yàn)次數(shù)越少,該方案越合理記當(dāng)且取最小值時(shí),該方案最合理,因?yàn)椋?,所以時(shí)平均檢驗(yàn)次數(shù)最少,約為次.【點(diǎn)睛】本題考查了離散型隨機(jī)變量的分布列、數(shù)學(xué)期望,考查了分析問(wèn)題、解決問(wèn)題的能力,屬于中檔題.20.(1);(2)不存在,理由見解析【解析】
(1)寫出,根據(jù),斜率乘積為-1,建立等量關(guān)系求解離心率;(2)寫出直線AB的方程,根據(jù)韋達(dá)定理求出點(diǎn)B的坐標(biāo),計(jì)算出弦長(zhǎng),根據(jù)垂直關(guān)系同理可得,利用等式即可得解.【詳解】(1)由題可得,過(guò)點(diǎn)作直線交橢圓于點(diǎn),且,直線交軸于點(diǎn).點(diǎn)為橢圓的右頂點(diǎn)時(shí),的坐標(biāo)為,即,,化簡(jiǎn)得:,即,解得或(舍去),所以;(2
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年特色酒店租賃合同
- 2024年度貨物進(jìn)口與銷售合同2篇
- 2024年歐盟數(shù)字單一市場(chǎng)戰(zhàn)略合同
- 2024年度綠色建筑借貸擔(dān)保合同示范文本3篇
- 2025采購(gòu)機(jī)票合同范本
- 2024年二手汽車買賣合同樣本3篇
- 臨時(shí)辦公搭棚施工合同范本
- 2025建筑安裝工程招標(biāo)合同書范本
- 公司宿舍晚歸規(guī)定
- 企業(yè)文化建設(shè)輔導(dǎo)員聘任書
- 超市冷鏈安裝施工方案
- 工作述職評(píng)分表
- (13)-圓號(hào)多彩的交響世界
- 初中物理電學(xué)說(shuō)題比賽課件
- 2023-2024學(xué)年四川省涼山州小學(xué)語(yǔ)文三年級(jí)期末通關(guān)測(cè)試題詳細(xì)參考答案解析
- 運(yùn)動(dòng)改造大腦(新版)
- 機(jī)械能守恒定律一輪復(fù)習(xí)教學(xué)設(shè)計(jì)
- 青島幼兒師范高等??茖W(xué)校工作人員招聘考試真題2022
- 直播電商知到章節(jié)答案智慧樹2023年濰坊工程職業(yè)學(xué)院
- 信號(hào)與系統(tǒng)(湖南工學(xué)院)知到章節(jié)答案智慧樹2023年
- 西方經(jīng)濟(jì)學(xué)(上下冊(cè))PPT全套教學(xué)課件
評(píng)論
0/150
提交評(píng)論