2022屆玉溪市第一中學(xué)高考仿真模擬數(shù)學(xué)試卷含解析_第1頁
2022屆玉溪市第一中學(xué)高考仿真模擬數(shù)學(xué)試卷含解析_第2頁
2022屆玉溪市第一中學(xué)高考仿真模擬數(shù)學(xué)試卷含解析_第3頁
2022屆玉溪市第一中學(xué)高考仿真模擬數(shù)學(xué)試卷含解析_第4頁
2022屆玉溪市第一中學(xué)高考仿真模擬數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2021-2022高考數(shù)學(xué)模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.以,為直徑的圓的方程是A. B.C. D.2.已知復(fù)數(shù),其中,,是虛數(shù)單位,則()A. B. C. D.3.在等腰直角三角形中,,為的中點,將它沿翻折,使點與點間的距離為,此時四面體的外接球的表面積為().A. B. C. D.4.“紋樣”是中國藝術(shù)寶庫的瑰寶,“火紋”是常見的一種傳統(tǒng)紋樣.為了測算某火紋紋樣(如圖陰影部分所示)的面積,作一個邊長為3的正方形將其包含在內(nèi),并向該正方形內(nèi)隨機投擲200個點,己知恰有80個點落在陰影部分據(jù)此可估計陰影部分的面積是()A. B. C.10 D.5.tan570°=()A. B.- C. D.6.設(shè)不等式組表示的平面區(qū)域為,若從圓:的內(nèi)部隨機選取一點,則取自的概率為()A. B. C. D.7.已知直線與圓有公共點,則的最大值為()A.4 B. C. D.8.設(shè)雙曲線(a>0,b>0)的一個焦點為F(c,0)(c>0),且離心率等于,若該雙曲線的一條漸近線被圓x2+y2﹣2cx=0截得的弦長為2,則該雙曲線的標(biāo)準(zhǔn)方程為()A. B.C. D.9.已知滿足,則的取值范圍為()A. B. C. D.10.已知函數(shù),且的圖象經(jīng)過第一、二、四象限,則,,的大小關(guān)系為()A. B.C. D.11.設(shè),,則“”是“”的A.充分而不必要條件 B.必要而不充分條件C.充要條件 D.既不充分也不必要條件12.下列函數(shù)中,在區(qū)間上單調(diào)遞減的是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.對定義在上的函數(shù),如果同時滿足以下兩個條件:(1)對任意的總有;(2)當(dāng),,時,總有成立.則稱函數(shù)稱為G函數(shù).若是定義在上G函數(shù),則實數(shù)a的取值范圍為________.14.《九章算術(shù)》第七章“盈不足”中第一題:“今有共買物,人出八,盈三錢;人出七,不足四,問人數(shù)物價各幾何?”借用我們現(xiàn)在的說法可以表述為:有幾個人合買一件物品,每人出8元,則付完錢后還多3元;若每人出7元,則還差4元才夠付款.問他們的人數(shù)和物品價格?答:一共有_____人;所合買的物品價格為_______元.15.若,i為虛數(shù)單位,則正實數(shù)的值為______.16.函數(shù)在區(qū)間(-∞,1)上遞增,則實數(shù)a的取值范圍是____三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)當(dāng)時,試求曲線在點處的切線;(2)試討論函數(shù)的單調(diào)區(qū)間.18.(12分)設(shè)函數(shù).(1)若,求實數(shù)的取值范圍;(2)證明:,恒成立.19.(12分)如圖,在三棱柱中,、、分別是、、的中點.(1)證明:平面;(2)若底面是正三角形,,在底面的投影為,求到平面的距離.20.(12分)已知(1)當(dāng)時,判斷函數(shù)的極值點的個數(shù);(2)記,若存在實數(shù),使直線與函數(shù)的圖象交于不同的兩點,求證:.21.(12分)已知函數(shù)(,),且對任意,都有.(Ⅰ)用含的表達式表示;(Ⅱ)若存在兩個極值點,,且,求出的取值范圍,并證明;(Ⅲ)在(Ⅱ)的條件下,判斷零點的個數(shù),并說明理由.22.(10分)如圖1,在等腰梯形中,兩腰,底邊,,,是的三等分點,是的中點.分別沿,將四邊形和折起,使,重合于點,得到如圖2所示的幾何體.在圖2中,,分別為,的中點.(1)證明:平面.(2)求直線與平面所成角的正弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】

設(shè)圓的標(biāo)準(zhǔn)方程,利用待定系數(shù)法一一求出,從而求出圓的方程.【詳解】設(shè)圓的標(biāo)準(zhǔn)方程為,由題意得圓心為,的中點,根據(jù)中點坐標(biāo)公式可得,,又,所以圓的標(biāo)準(zhǔn)方程為:,化簡整理得,所以本題答案為A.【點睛】本題考查待定系數(shù)法求圓的方程,解題的關(guān)鍵是假設(shè)圓的標(biāo)準(zhǔn)方程,建立方程組,屬于基礎(chǔ)題.2.D【解析】試題分析:由,得,則,故選D.考點:1、復(fù)數(shù)的運算;2、復(fù)數(shù)的模.3.D【解析】

如圖,將四面體放到直三棱柱中,求四面體的外接球的半徑轉(zhuǎn)化為求三棱柱外接球的半徑,然后確定球心在上下底面外接圓圓心連線中點,這樣根據(jù)幾何關(guān)系,求外接球的半徑.【詳解】中,易知,翻折后,,,設(shè)外接圓的半徑為,,,如圖:易得平面,將四面體放到直三棱柱中,則球心在上下底面外接圓圓心連線中點,設(shè)幾何體外接球的半徑為,,四面體的外接球的表面積為.故選:D【點睛】本題考查幾何體的外接球的表面積,意在考查空間想象能力,和計算能力,屬于中檔題型,求幾何體的外接球的半徑時,一般可以用補形法,因正方體,長方體的外接球半徑容易求,可以將一些特殊的幾何體補形為正方體或長方體,比如三條側(cè)棱兩兩垂直的三棱錐,或是構(gòu)造直角三角形法,確定球心的位置,構(gòu)造關(guān)于外接球半徑的方程求解.4.D【解析】

直接根據(jù)幾何概型公式計算得到答案.【詳解】根據(jù)幾何概型:,故.故選:.【點睛】本題考查了根據(jù)幾何概型求面積,意在考查學(xué)生的計算能力和應(yīng)用能力.5.A【解析】

直接利用誘導(dǎo)公式化簡求解即可.【詳解】tan570°=tan(360°+210°)=tan210°=tan(180°+30°)=tan30°=.故選:A.【點睛】本題考查三角函數(shù)的恒等變換及化簡求值,主要考查誘導(dǎo)公式的應(yīng)用,屬于基礎(chǔ)題.6.B【解析】

畫出不等式組表示的可行域,求得陰影部分扇形對應(yīng)的圓心角,根據(jù)幾何概型概率計算公式,計算出所求概率.【詳解】作出中在圓內(nèi)部的區(qū)域,如圖所示,因為直線,的傾斜角分別為,,所以由圖可得取自的概率為.故選:B【點睛】本小題主要考查幾何概型的計算,考查線性可行域的畫法,屬于基礎(chǔ)題.7.C【解析】

根據(jù)表示圓和直線與圓有公共點,得到,再利用二次函數(shù)的性質(zhì)求解.【詳解】因為表示圓,所以,解得,因為直線與圓有公共點,所以圓心到直線的距離,即,解得,此時,因為,在遞增,所以的最大值.故選:C【點睛】本題主要考查圓的方程,直線與圓的位置關(guān)系以及二次函數(shù)的性質(zhì),還考查了運算求解的能力,屬于中檔題.8.C【解析】

由題得,,又,聯(lián)立解方程組即可得,,進而得出雙曲線方程.【詳解】由題得①又該雙曲線的一條漸近線方程為,且被圓x2+y2﹣2cx=0截得的弦長為2,所以②又③由①②③可得:,,所以雙曲線的標(biāo)準(zhǔn)方程為.故選:C【點睛】本題主要考查了雙曲線的簡單幾何性質(zhì),圓的方程的有關(guān)計算,考查了學(xué)生的計算能力.9.C【解析】

設(shè),則的幾何意義為點到點的斜率,利用數(shù)形結(jié)合即可得到結(jié)論.【詳解】解:設(shè),則的幾何意義為點到點的斜率,作出不等式組對應(yīng)的平面區(qū)域如圖:由圖可知當(dāng)過點的直線平行于軸時,此時成立;取所有負值都成立;當(dāng)過點時,取正值中的最小值,,此時;故的取值范圍為;故選:C.【點睛】本題考查簡單線性規(guī)劃的非線性目標(biāo)函數(shù)函數(shù)問題,解題時作出可行域,利用目標(biāo)函數(shù)的幾何意義求解是解題關(guān)鍵.對于直線斜率要注意斜率不存在的直線是否存在.10.C【解析】

根據(jù)題意,得,,則為減函數(shù),從而得出函數(shù)的單調(diào)性,可比較和,而,比較,即可比較.【詳解】因為,且的圖象經(jīng)過第一、二、四象限,所以,,所以函數(shù)為減函數(shù),函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,又因為,所以,又,,則|,即,所以.故選:C.【點睛】本題考查利用函數(shù)的單調(diào)性比較大小,還考查化簡能力和轉(zhuǎn)化思想.11.A【解析】

根據(jù)對數(shù)的運算分別從充分性和必要性去證明即可.【詳解】若,,則,可得;若,可得,無法得到,所以“”是“”的充分而不必要條件.所以本題答案為A.【點睛】本題考查充要條件的定義,判斷充要條件的方法是:①若為真命題且為假命題,則命題p是命題q的充分不必要條件;②若為假命題且為真命題,則命題p是命題q的必要不充分條件;③若為真命題且為真命題,則命題p是命題q的充要條件;④若為假命題且為假命題,則命題p是命題q的即不充分也不必要條件.⑤判斷命題p與命題q所表示的范圍,再根據(jù)“誰大誰必要,誰小誰充分”的原則,判斷命題p與命題q的關(guān)系.12.C【解析】

由每個函數(shù)的單調(diào)區(qū)間,即可得到本題答案.【詳解】因為函數(shù)和在遞增,而在遞減.故選:C【點睛】本題主要考查常見簡單函數(shù)的單調(diào)區(qū)間,屬基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

由不等式恒成立問題采用分離變量最值法:對任意的恒成立,解得,又在,恒成立,即,所以,從而可得.【詳解】因為是定義在上G函數(shù),所以對任意的總有,則對任意的恒成立,解得,當(dāng)時,又因為,,時,總有成立,即恒成立,即恒成立,又此時的最小值為,即恒成立,又因為解得.故答案為:【點睛】本題是一道函數(shù)新定義題目,考查了不等式恒成立求參數(shù)的取值范圍,考查了學(xué)生分析理解能力,屬于中檔題.14.753【解析】

根據(jù)物品價格不變,可設(shè)共有x人,列出方程求解即可【詳解】設(shè)共有人,由題意知,解得,可知商品價格為53元.即共有7人,商品價格為53元.【點睛】本題主要考查了數(shù)學(xué)文化及一元一次方程的應(yīng)用,屬于中檔題.15.【解析】

利用復(fù)數(shù)模的運算性質(zhì),即可得答案.【詳解】由已知可得:,,解得.故答案為:.【點睛】本題考查復(fù)數(shù)模的運算性質(zhì),考查推理能力與計算能力,屬于基礎(chǔ)題.16.【解析】

根據(jù)復(fù)合函數(shù)單調(diào)性同增異減,結(jié)合二次函數(shù)的性質(zhì)、對數(shù)型函數(shù)的定義域列不等式組,解不等式求得的取值范圍.【詳解】由二次函數(shù)的性質(zhì)和復(fù)合函數(shù)的單調(diào)性可得解得.故答案為:【點睛】本小題主要考查根據(jù)對數(shù)型復(fù)合函數(shù)的單調(diào)性求參數(shù)的取值范圍,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1);(2)見解析【解析】

(1)對函數(shù)進行求導(dǎo),可以求出曲線在點處的切線,利用直線的斜截式方程可以求出曲線的切線方程;(2)對函數(shù)進行求導(dǎo),對實數(shù)進行分類討論,可以求出函數(shù)的單調(diào)區(qū)間.【詳解】(1)當(dāng)時,函數(shù)定義域為,,所以切線方程為;(2)當(dāng)時,函數(shù)定義域為,在上單調(diào)遞增當(dāng)時,恒成立,函數(shù)定義域為,又在單調(diào)遞增,單調(diào)遞減,單調(diào)遞增當(dāng)時,函數(shù)定義域為,在單調(diào)遞增,單調(diào)遞減,單調(diào)遞增當(dāng)時,設(shè)的兩個根為且,由韋達定理易知兩根均為正根,且,所以函數(shù)的定義域為,又對稱軸,且,在單調(diào)遞增,單調(diào)遞減,單調(diào)遞增【點睛】本題考查了曲線切線方程的求法,考查了利用函數(shù)的導(dǎo)數(shù)討論函數(shù)的單調(diào)性問題,考查了分類思想.18.(1)(2)證明見解析【解析】

(1)將不等式化為,利用零點分段法,求得不等式的解集.(2)將要證明的不等式轉(zhuǎn)化為證,恒成立,由的最小值為,得到只要證,即證,利用絕對值不等式和基本不等式,證得上式成立.【詳解】(1)∵,∴,即當(dāng)時,不等式化為,∴當(dāng)時,不等式化為,此時無解當(dāng)時,不等式化為,∴綜上,原不等式的解集為(2)要證,恒成立即證,恒成立∵的最小值為-2,∴只需證,即證又∴成立,∴原題得證【點睛】本題考查絕對值不等式的性質(zhì)、解法,基本不等式等知識;考查推理論證能力、運算求解能力;考查化歸與轉(zhuǎn)化,分類與整合思想.19.(1)證明見解析;(2).【解析】

(1)連接,連接、交于點,并連接,則點為的中點,利用中位線的性質(zhì)得出,,利用空間平行線的傳遞性可得出,然后利用線面平行的判定定理可證得結(jié)論;(2)推導(dǎo)出平面,并計算出,由此可得出到平面的距離為,即可得解.【詳解】(1)連接,連接、交于點,并連接,則點為的中點,、分別為、的中點,則,同理可得,.平面,平面,因此,平面;(2)由于在底面的投影為,平面,平面,,為正三角形,且為的中點,,,平面,且,因此,到平面的距離為.【點睛】本題考查線面平行的證明,同時也考查了點到平面距離的計算,考查推理能力與計算能力,屬于中等題.20.(1)沒有極值點;(2)證明見解析【解析】

(1)求導(dǎo)可得,再求導(dǎo)可得,則在遞增,則,從而在遞增,即可判斷;(2)轉(zhuǎn)化問題為存在且,使,可得,由(1)可知,即,則,整理可得,則,設(shè),則可整理為,設(shè),利用導(dǎo)函數(shù)可得,即可求證.【詳解】(1)當(dāng)時,,,所以在遞增,所以,所以在遞增,所以函數(shù)沒有極值點.(2)由題,,若存在實數(shù),使直線與函數(shù)的圖象交于不同的兩點,即存在且,使.由可得,,由(1)可知,可得.,所以,即,下面證明,只需證明:,令,則證,即.設(shè),那么,所以,所以,即【點睛】本題考查利用導(dǎo)函數(shù)求函數(shù)的極值點,考查利用導(dǎo)函數(shù)解決雙變量問題,考查運算能力與推理論證能力.21.(1)(2)見解析(3)見解析【解析】試題分析:利用賦值法求出關(guān)系,求函數(shù)導(dǎo)數(shù),要求函數(shù)有兩個極值點,只需在內(nèi)有兩個實根,利用一元二次方程的根的分布求出的取值范圍,再根據(jù)函數(shù)圖象和極值的大小判斷零點的個數(shù).試題解析:(Ⅰ)根據(jù)題意:令,可得,所以,經(jīng)驗證,可得當(dāng)時,對任意,都有,所以.(Ⅱ)由(Ⅰ)可知,且,所以,令,要使存在兩個極值點,,則須有有兩個不相等的正數(shù)根,所以或解得或無解,所以的取值范圍,可得,由題意知,令,則.而當(dāng)時,,即,所以在上單調(diào)遞減,所以

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論